- 更多网络例句与运动方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
By analyzing the relations of two adjacent waves in the process of locomotion and doing an approximation of the serpenoid curve, the motion function of relative angles between two adjacent links and the absolute angles between each link and the baseline on the traveling curve are built.
通过对蠕动运动过程中相邻2个波形的分析和对serpenoid曲线的近似,建立了运动波形上各相邻连杆间的相对角度运动方程和各连杆与基线之间的绝对角度运动方程。
-
The complete model of locomotive and vehicle and the exact motion equations of wheel-set are established, in which, three-dimension wheel/rail contact geometry is taken into account and the Kalker's creep theory is employed to analyze the effects of the contact region of wheel/rail. An iterative procedure of solving wheel/rail creep force is proposed to improve the existed calculating method. Finally, the motion equations of vehicle with 23 DOFs are derived using the D'Alembert principle.
建立了较完善的机车车辆分析模型和较精确的轮对运动方程:考虑三维非线性轮轨接触几何关系,用Kalker蠕滑理论研究了轮轨接触区的蠕滑效应,建立了较为详细的轮对运动方程,提出用迭代法来求解轮轨蠕滑力从而对现有蠕滑力求解方法进行了改进,并采用D′Alembert原理推导了23个自由度车辆的运动方程。
-
Based on Crank-Nicoson's technique, and a new approach for the numerical simulation of the model is raised. The truncation error of the one step difference method reaches O (△t^2+△x^2) and of quite good stability condition.
基于Coriolis加速度和Lagrangian应力公式,利用Newton第二定律导出轴向加速度运动弦线横向振动的动力学模型;通过线性变换将方程化为一阶无量纲的非线性微分方程组;并利用Crank-Nicoson的中点离散技巧,给出运动方程的单步二阶差分方法;算法把对运动方程和本构方程分别离散,使之可以用于不同本构的运动弦线的数值仿真。
-
Firstly, dynamic equations?mathematics modal of a fighter and a bomber has been built and some solutions of the dynamic equations have been acquired in the paper. Secondly, a flight simulation vision system has been set up which can display flight status and flight parameters of the simulated airplane.
首先,本文建立某歼击机及某轰炸机的六自由度运动方程的数学模型,并做了一些求解运动方程方法的探讨,在完成运动方程求解的基础上创建模拟视景系统,用于显示飞机的即时位置及飞行姿态和各种飞行参数。
-
Firstly, from Gauss' equations and relative motion equations, the relation of control impulse and relative motion was expressed as analysis formulas and simplified based on the near circular condition. By deeply analyzing the mechanism of impulses in each directions (radial, in-track and cross-track directions) effect on relative motion respectively, two maneuvers to establish formation flying are provided: one is to utilize the impulses in radial and cross-track directions, the other is to utilize the impulses in along-track and cross-track directions. Both of the two methods can establish satellite formation flying of any configuration. The method with impulses irradial and cross-track directions needs only 3 impulses, while the method with impulses in along-back and cross-track directions needs 4 impulses. Lastly, by an example of establishing a space-circle formation flying, two maneuvers were compared with each other in the amount of impulses and fuel consuming estimation.
首先由高斯型拉格朗日轨道摄动运动方程得到轨道坐标系中控制冲量与轨道根数偏差的关系,基于近圆轨道的条件简化并带入相对运动方程,得到控制冲量与相对运动的关系表达式;通过深入分析各个方向(径向、沿迹向与轨道面法向)的控制冲量对相对运动的影响,给出了分别用径向与轨道面法向控制冲量组合和沿迹向与轨道面法向控制冲量组合实现编队捕获的两种控制策略;最后给出了一个空间圆编队捕获实例,并从燃料消耗、施加冲量次数及捕获时间等角度对比研究了两种控制策略的特点。
-
For the plane wave of laser without pulse shape, we derive the express of electron trajectory by the relative Lorentz and energy equations. Note that the orbit of electron becomes a "fat-8" in the average rest frame. For the plane wave of Gaussian laser, we may know that, through relative Hamilton-Jacobi equation, electrons are accelerated in the front of pulse and decelerated backward. Whereas for the non-plane wave of Gaussian laser, we solve the Lorentz and energy equations by fourth order Runge-Kutta method.
对于无脉冲形状的激光平面波是从考虑了相对论效应的Lorentz方程和能量方程出发,得到了电子的运动轨迹方程表达式,在纵向平均速度参照系下该电子的轨迹呈现"8"字形;对于高斯型单色激光平面波是从相对论Hamilton-Jacobi方程出发,得到激光平面波在脉冲前沿加速电子而脉冲后沿减速电子,电子能量增益为零;而对于高斯型单色激光非平面波是从拉格朗日运动方程和能量方程出发,通过四阶Runge-Kutta法数值求解,得到电子在纵向有质动力、横向电场作用下加速电子,最后在强大的横向有质动力作用下从脉冲侧面散射出去,可以获得很大能量增益本文得到了相应的电子瞬时动量解析表达式。
-
This course consists of three parts : A.The fundamental theory of gyroscopes. a.Kinematics and dynamics of gyroscopes, consisting of Coriolis acceleration, theorem of angular momentum, Euler's dynamical equations, dynamical explanation of gyroscopes' properties. b.Gyroscopes' motion equations, including the complete equations, technical equations and precession equations derived from Euler's dynamical equations, and the technical equations derived from static vs. dynamic method. c.Analysis of gyroscopes' motion. d.Coordinate systems and their mutual transformation. e.Gyroscope drift and its measurement. B.Principle of typical gyroscope instruments, such as gyro compass, gyro north finder, gyro horizon, platform compass, rate gyroscope and integrating gyroscope. C.Principles and applications of new-type gyroscpes, such as electrically suspended gyro, ring laser gyroscope, fiber optical gyroscope, hemispherical resonator gyro, dynamically tuned gyroscope and micro inertial sensors.
本课程教学内容由三部分组成:陀螺仪的基本理论,内容包括:陀螺力学基础(哥氏加速度、角动量定理和欧拉动力学方程、陀螺特性的力学解释);陀螺仪运动方程和运动分析(用欧拉动力学方程建立完整方程、陀螺仪运动的技术方程和进动方程,用动静法建立技术方程);坐标系及其变换;陀螺仪的漂移及其测试;典型陀螺仪器(包括陀螺罗经、陀螺找北仪、陀螺地平仪、平台罗经、速率陀螺仪和积分陀螺仪等)的工作原理;新型陀螺仪(包括静电陀螺仪、激光陀螺仪、光纤陀螺仪、半球谐振陀螺仪、挠性陀螺仪、微机械陀螺仪等)的原理及应用。
-
Only with such characteristics, the movement equations can be expressed as matrices, and the idea of transforming the movement equations to the simplest form through a nonlinear transformation can be realized;(2) The form of Zi =Yi + YTH2i Y + Y7H3i Y(2)+ Y(2)T H4i Y(2)+ YTH5i Y(3) is adhibited in the nonlinear transformation, so that the multivalued problem caused by the nonlinear transformation is avoided, and the higher order transformation can be taken next;(3) The fourth order nonlinear transformation matrices H21,H31,H41 and H51 are derived, by which the original movement equations of electric power system is transformed to Jodan form in Z space;(4) By use of the fourth order nonlinear transformation, the approximate expression of the stability boundary is obtained, in Z space it is Z1= 0,in Y space it is Y1 + YTH21 Y + YTH31 Y(2)-i- Y(2) TH41 Y(2)+YTH51 Y(3)= 0;(5) The criterion used in this paper to judge whether the system critical unstable is simple and quick;(6) The method used in this paper is a direct method, and no need to construct an energy function.
正是由 于电力系统的运动方程具有这样的特性,才能写成矩阵的形式,通过非线性变换将电力系统的运动方程变换为最简单的线性形式的思想才能得以实现;(2)将通常运用于电力系统暂态稳定性分析的Normal Form变换的形式由 Yi= Zi+ ZTh2riZ变形为 Zi= Yi+YTH2iY+YTH3iY(2)+Y(2)TH4iY(2)+YTH5iY(3),从而使得在对持续故障轨线实施同样的非线性变换以确定临界切除时间时,避免了非线性变换带来的多值性的问题,而只有在没有多值性问题的困扰下,才能采用较高阶的变换:(3)推导出了将原始电力系统系统的运动方程变换到Z空间的约当形式的非线性变换矩阵H21、H31、H41、HS1:(4)在运用四阶了「线性变换的情况下,给出了受扰动后系统的稳定边界的近似的解析表达,在Z空间为Z1=0,在y空间为: Y1+YTH21Y+YTH31Y(2)+Y(2)TH41Y(2)+YTH51Y(3)=0 (5)确定临界失稳的判据简单、快捷:对于一个复杂的电力系统,其稳定边界是相当复杂的一个高维曲面,即便是已知系统稳定边界的解析表达,要求出系统持续故障轨线何时与这一高维曲面相交,在数学上几乎是不可能实现的。
-
Introducing the method that analyzes the dynamic stability of airplanes in the aviation, the small perturbation non-dimensional linearized motional equations were develped in detail based on the small perturbation theory and quasi-constant assumption, the distinguishing rule and quality judgement criteria of dynamic stability are set up in this section.
引入航空中飞机运动稳定性方程的处理方法,运用小扰动理论,详细推导了HYSWAS的小扰动无因次线化运动方程及其特征方程,提出了HYSWAS运动稳定性判别准则以及运动稳定性品质的评判指标
-
Nonlinear partial differential dynamic equations of bending vibration of a tilting stepped drive shaft with two supports were built under non-inertia movement coordinate system by theorem of the motion of mass center and Heaviside function. According to the condition of equal displacement in an adjoining plane of the shaft, an equivalent shaft and its equation were obtained. A motion equation of the equivalent shaft was obtained by method of Galerkin. An approximate steady-state solution of the main resonance was obtained by method of multiple scales. The influence factors, motion stability, amplitude jump of main resonance of a stepped drive shaft and so on were analyzed.
用质心运动定理、Heaviside函数建立了非惯性系下倾料两端支承阶梯传动轴的非线性弯曲振动偏微分动力学方程,并根据相邻轴段的衔接面处位移相等的条件,得到阶梯轴的当量轴及其动力学方程;用Galerkin法得到当量轴的弯曲运动方程,用多尺度法求得稳态下当量轴的主共振的一次近似定常解,分析了影响阶梯传动轴主共振的因素、运动稳定性、振幅突变性等。
- 更多网络解释与运动方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
angular motion equation:角运动方程
angular momentum | 角动量 | angular motion equation | 角运动方程 | angular motion | 角动, 转动
-
canonical equation of motion:正则运动方程
canonical equation 正则方程 | canonical equation of motion 正则运动方程 | canonical field theory 正则场论
-
canonical equation of motion:标准运动方程
canonical equation 典型方程 | canonical equation of motion 标准运动方程 | canonical expression 典范式
-
euler equations of hydrokinetics:欧拉铃运动方程
euler equation for turbomachine 欧拉涡轮机方程 | euler equations of hydrokinetics 欧拉铃运动方程 | euler gas dynamical equations 欧拉气体动力学方程
-
motion equation:运动方程
motion 运动 | motion equation 运动方程 | motor 电动机
-
motion; equation of:运动方程
547. 运动 motion | 548. 运动方程 motion, equation of | 549. 马特 Mott, Sir Nevill F.
-
numerical solution of motion equation:运动方程数值解
运动方程分析解 analytical solution of motion equation | 运动方程数值解 numerical solution of motion equation | 运动方程数值解 numerical solution of motion equation
-
numerical solution of motion equation:运动方程 值解
02.273 运动方程分析解analytical solution of motion equation | 02.274 运动方程 值解numerical solution of motion equation | 02.275 态向 state vector
-
analytical solution of motion equation:运动方程分析解
月球轨道飞行器 lu nar orbiter | 运动方程分析解 analytical solution of motion equation | 运动方程数值解 numerical solution of motion equation
-
nonlinear equation of motion:非线性运动方程
非线性椭圆型方程:Nonlinear Elliptic Equation | 非线性运动方程:nonlinear equation of motion | 高阶非线性薛定谔方程:Higher order nonlinear Schrodinger equation