- 更多网络例句与边缘线圈相关的网络例句 [注:此内容来源于网络,仅供参考]
-
After take analyzed deeply for the opened magnet circuit with FEMM (Finite Element Method Magnetics) we find out the field distributing that is separated into three sections . One is the main area what we called as positive field section. Beside the main field there are tow areas that are called the inverted field sections. Loudspeaker arise a very serious distortion when the voice coil moving into inverted field areas. The direction of induced current in the coil part of entered inverted field area is same with the current driving into loudspeaker so that total currents increas largely and heat increase rapidly. With more coils moving into inverted area the voice coil will take on negative inductance properties. It is the main reason that voice coil is burned by heating with increasing current due to arise negative inductance. So opened magnetic circuit is not suitable for the woofers in which the voice coil have wider displacement range. When using this kind magnetic circuit design, the voice coil moving range should be less than the range of positive field to avoid loudspeaker arise serious distortion and heating. Even though voice coil moving range is in the positive area, loudspeaker will still arise more distortion because the field distribution is very cliffy at tow sides of the positive area and full range of magnetic field distribution is not parallel that will arise distortion. Base on above reasons, opened magnetic circuit is not an ideal magnetic circuit for low-frequency loudspeakers. But it can be used in mid-range or high-frequency productions.
开式磁路是由2片钕铁硼磁铁和主导磁板和导磁垫片组成,我们在实践过程中发现这种磁路结构不适合于低频扬声器的使用,我们通过使用FEMM(Finite Element Method Magnetics)软件包对该磁路进行了分析,该磁路的磁场范围被分成3个区域,其中在主导磁板附近形成一个正向磁场,在正向磁场的两边存在反向的磁场,音圈在工作时有很大一部分进入了反向磁场中,在反向磁场内线圈的感应电流方向与驱动电流方向相同,使得音圈呈现出负感抗特性,由于音圈的负感抗特性引起电流的增加导致音圈发热甚至烧毁,因此在扬声器中使用开式磁路时,音圈的运动范围应控制在正向磁场范围之内,否则音圈运动到反向磁场区域时将会产生很大的失真和发热,即使在设计时已经将音圈的运动范围控制在正向磁场范围之内,由于正向磁场的2个边缘磁场强度衰减太快,同时开式磁路中磁场的分布不是平行的,而是自由发散的分布,这样肯定会导致扬声器的非线性失真,因此我们得到的结论是:开式磁路并不是一个理想的磁路,它不适合于低频扬声器的使用,但它还可以应用于中高频扬声器。
-
The opened magnetic circuit is composed as tow NdFeB permanent magnets and a top plate without U-yoke. After take analyzed deeply for the opened magnet circuit with FEMM (Finite Element Method Magnetics) we find out the field distributing that is separated into three sections . One is the main area what we called as positive field section. Beside the main field there are tow areas that are called the inverted field sections. Loudspeaker arise a very serious distortion when the voice coil moving into inverted field areas. The direction of induced current in the coil part of entered inverted field area is same with the current driving into loudspeaker so that total currents increas largely and heat increase rapidly. With more coils moving into inverted area the voice coil will take on negative inductance properties. It is the main reason that voice coil is burned by heating with increasing current due to arise negative inductance. So opened magnetic circuit is not suitable for the woofers in which the voice coil have wider displacement range. When using this kind magnetic circuit design, the voice coil moving range should be less than the range of positive field to avoid loudspeaker arise serious distortion and heating. Even though voice coil moving range is in the positive area, loudspeaker will still arise more distortion because the field distribution is very cliffy at tow sides of the positive area and full range of magnetic field distribution is not parallel that will arise distortion. Base on above reasons, opened magnetic circuit is not an ideal magnetic circuit for low-frequency loudspeakers. But it can be used in mid-range or high-frequency productions.
开式磁路是由2片钕铁硼磁铁和主导磁板和导磁垫片组成,我们在实践过程中发现这种磁路结构不适合于低频扬声器的使用,我们通过使用FEMM(Finite Element Method Magnetics)软件包对该磁路进行了分析,该磁路的磁场范围被分成3个区域,其中在主导磁板附近形成一个正向磁场,在正向磁场的两边存在反向的磁场,音圈在工作时有很大一部分进入了反向磁场中,在反向磁场内线圈的感应电流方向与驱动电流方向相同,使得音圈呈现出负感抗特性,由于音圈的负感抗特性引起电流的增加导致音圈发热甚至烧毁,因此在扬声器中使用开式磁路时,音圈的运动范围应控制在正向磁场范围之内,否则音圈运动到反向磁场区域时将会产生很大的失真和发热,即使在设计时已经将音圈的运动范围控制在正向磁场范围之内,由于正向磁场的2个边缘磁场强度衰减太快,同时开式磁路中磁场的分布不是平行的,而是自由发散的分布,这样肯定会导致扬声器的非线性失真,因此我们得到的结论是:开式磁路并不是一个理想的磁路,它不适合于低频扬声器的使用,但它还可以应用于中高频扬声器。
- 更多网络解释与边缘线圈相关的网络解释 [注:此内容来源于网络,仅供参考]
-
edge connecter:印刷板插头座
edge coil | 边缘线圈,边绕线圈 | edge connecter | 印刷板插头座 | edge crack | 边缘裂纹,裂边
-
growing:发育
growing edge 生长边缘 | growing 发育 | growler 短路线圈测试仪;电机转子测试装置
-
edgewise winging:扁立绕法
edgesurf || 边界曲面,边缘曲面 | edgewise winging || 扁立绕法 | edgewise wound coil || 扁立缠绕线圈
-
edgewise pointer; edgewise needle:侧立指针
边缘打孔卡 edge-punched card | 侧立指针 edgewise pointer; edgewise needle | 扁立绕法线圈 edgewise wound coil