- 更多网络例句与解析微分相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The method of address mapping used by CMAC is adopted in the new network.
由于高阶接收域函数的引入,使其可以获得较CMAC连续性强且有解析微分的复杂函数近似。
-
The structure of analytic solution space is obtained and general form of the analytic solution is presented by means of Dirichlet Series. The convergence of Dirichlet Series solution is discussed.
根据比例延迟微分方程的性质,我们构造了Dirichlet级数形式的解析解,证明了Dirichlet级数形式解的收敛性,获得了保证方程解析解渐近稳定的充分条件。
-
By adopting the asymptotic expansion method, the higher order partial differential equation was transformed into the system of ordinary differential equations.
采用渐近展开法,将该控制方程——高阶偏微分方程转化为常微分方程组,求解该方程组获得应力函数,进而得到功能梯度材料中裂纹尖端应力高阶渐近场的解析式。
-
Based on detailed mathematical model of the heat and mass transfer processes in packed-type counterflow liquid desiccant systems, a set of linear ordinary differential equations describing the transfer processes is obtained by some appropriate simplications.
在建立逆流填料式液体除湿系统传热传质过程的数学模型基础上,通过合理的简化处理,导出了描述这一热质传递过程的常微分方程组,得到了相应的解析解;并与精确数学模型的数值解进行了对比,二者具有良好的吻合性;利用解析解分析了各参数对除湿性能的影响;所得解析解具有较好的理论及应用价
-
First of all,we have given some of the basic concepts of differential equations, described the constant coefficient linear ordinary differential equation solution, for a class of second-order variable coefficient linear ordinary differential equation initial value problem, an approximate solution, the method is first unknown function of a definition for N sub-interval, and then in between each district within a constant coefficient ordinary differential equations similar to the replacement, the solution has been the problem as similar to the original analytical solution, and then gives a detailed second-order change order coefficient of linear homogeneous ordinary differential equation solution examples, the examples of the approximate method proposed in this paper is valid.
首先给出了微分方程的一些基本概念,讲述了常系数线性常微分方程的解法,针对一类二阶变系数线性常微分方程初值问题,提出了一个近似解法,本方法是先对未知函数的一个定义区间作N等分,然后在每一个小区间内用一个常系数常微分方程近似替换,所得到的解作为原问题的近似解析解,随后详细给出了一个求二阶变系数齐次线性常微分方程的解的实例,该实例说明本文提出的近似方法是有效的。
-
Using PH linearization ,the nonlinear partial differential equation was transformed into linear partial differential equation,and then,by introducing a complex function,it was further transformed into a set of two linear differential equations.
应用 PH线性化方法,将非线性偏微分方程转化为线性偏微分方程,引入复函数将复常数偏微分方程变为两个线性实常数微分方程组,并采用小参数迭代法进行求解,近似求得了螺旋槽内气体动压分布的解析解。
-
The solutions were found to be good agrees with experimental results. The transfer characteristic of air dry/wet bulb temperature and spraying water temperature were discussed. The LMTD method based on this mathematical model is applicable to design and verify for the plate wet air cooler. The ratio of the wet bulb heat transfer coefficient to the heat transfer coefficient under air-cooled conditions was investigated theoretically and experimentally. The relative errors of the ratio between theoretical and experimental valves are small than 7 percent.
分别得到了平行流型式微分方程组的解析解与交叉流型式的近似解析解,实验验证了该解析解具有较高的计算精度;探讨了空气干湿球温度与喷淋水温的迁移特性;分析得到基于湿球温度迁移模型的对数平均温差法在湿式空冷器的设计与校核计算中是适用的,给出了空气湿球换热系数与空冷时空气对流换热系数比值的理论与实验确定方法,比值系数理论值与实验值比较最大相对误差小于7%。
-
In Chapter 3, we discuss the self-adjoint boundary-value problems for products of m differential operators generated by the same symmetric differential expression of order n defined on a, b
第三章 讨论了m个由同一n阶对称微分算式生成的赋予某种边界条件的微分算子乘积自伴边值问题,结合常微分算子自伴扩张的一般构造理论,分别给出了两个四阶微分算子、两个n阶微分算子、m个n阶微分算子乘积自伴边条件的解析刻划,得到了乘积微分算子是自伴的充分必要条件及与乘积算子自伴性有关的一些有益结果。
-
The transmission of heat differential equation for the heat conduction process of thermoelectric module was derived And the solution with the first kind boundary conditions under the influence of Thomson effect and the solution with the third kind boundary conditions without the influence of Thomson effect was obtained.
导出了电偶臂在电与热的偶合作用下传热微分方程,并对其进行解析求解:在考虑汤姆逊效应的影响下得出一类跟三类边界条件下传热方程的解析解,在忽略汤姆逊效应的影响下得出二类跟三类相的边界条件下传热方程的解析解。
-
The transmission of heat differential equation for the heat conduction process of thermoelectric module was derived And the solution with the first kind boundary conditions under the influence of Thomson effect and the solution with the third kind boundary conditions without the influence of Thomson effect was obtained.
在假设热电制冷的热端温度固定的条件下,得出热电制冷器在不同工况下的最佳工作参数并进一步求得在三类边界条件下的最佳工作参数;导出了电偶臂在电与热的偶合作用下传热微分方程,并对其进行解析求解:在考虑汤姆逊效应的影响下得出一类跟三类边界条件下传热方程的解析解,在忽略汤姆逊效应的影响下得出二类跟三类相的边界条件下传热方程的解析解。
- 更多网络解释与解析微分相关的网络解释 [注:此内容来源于网络,仅供参考]
-
analytic function:解析函数
DE解析函数 (analytic function) :可以用幂级数 (power series) 表示的函数;经常是可以无限微分的函数. 例如三角函数里的正弦函数是解析函数.
-
analytic manifold:解析流形
2)微分流形上的复结构是指复解析流形(见解析 流形(analytic manifold))的结构.如果M为微分流 形,则M上的复结构就是同定义在M上的实可微图册 相容的M上的复解析图册.这里,dim:M二Zdim.
-
analytical differential:解析微分
analytic transformation 解析变换 | analytical differential 解析微分 | analytical geometry 分析几何学
-
analytical geometry:分析几何学
analytical differential 解析微分 | analytical geometry 分析几何学 | analytical hierarchy 解析分层
-
differential graded algebra:微分分次代数
微分方程解析理论|analytic theory of differential equation | 微分分次代数|differential graded algebra | 微分环|differential ring
-
differential analyzer:微分解析仪
differential amplifier 差动放大器 | differential analyzer 微分解析仪 | differential arc lamp 差接弧光灯
-
diffusivity:扩散度
然后再以理查方程式为控制方程式求解解析解,由於理查方程式为非线性微分方程式不易直接求解,为了将理查方程式线性化以利於求解,本文假设比扩散度(diffusivity)及水力传导系数对体积含水比之微分为常数,
-
non-associative division algebra:非结合可除代数
非结合环|non-associative ring | 非结合可除代数|non-associative division algebra | 非解析微分方程|non-analytic differential equation
-
singular point of ordinary differential equation:常微分函数的奇点
解析函数的奇点 singular point of analytic function | 常微分函数的奇点 singular point of ordinary differential equation | 奇异过程 singular process
-
singular point of analytic function:解析函数的奇点
代数曲体的奇异点 singular point of algebraic variety | 解析函数的奇点 singular point of analytic function | 常微分函数的奇点 singular point of ordinary differential equation