- 更多网络例句与行矩阵相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the linear algebraic the coefficient of polynomial and the corresponding relation of the farmnla of multi-line matrix could be built,thus seck the maximum common factor of the polynomial through making use of primary transformation of line.
在线性代数中,可以建立多项式的系数与多行矩阵表示式之间的对应关系,从而利用初等行变换求多项式的最大公因式。
-
Add row/column at beginning of matrix.
添加行/矩阵开始在列。
-
Add row/column at end of matrix.
添加行/矩阵年底在列。
-
Remove row/column at beginning of matrix.
删除行/矩阵开始在列。
-
Remove row/column at end of matrix.
删除行/矩阵年底在列。
-
Secondly, linear algebra, can create a polynomial coefficient and multiple lines between the matrix-style counterparts, so as to transform line for the primary use of the domain P polynomial the greatest common factor.
其次,在线性代数中,可以建立多项式的系数与多行矩阵表示式之间的对应关系,从而利用初等行变换求数域P上的多项式的最大公因式。
-
Column-major order means that each matrix column will be stored in a single constant register, and row-major order means that each row of the matrix will be stored in a single constant register.
列顺序意味着每列矩阵都可以被保存到一个简单的常数寄存器中,行矩阵意味着每行都可以保存到一个常数寄存器中。
-
S:The author applies row matrix to extend concept of exclusive or from the set of nonnegative integer to the set composed of nonnegative integer array.
利用行矩阵,把异或概念从非负整数集推广到非负整数组构成的集,给出了高阶异或的概念,得到了关于高阶异或的一个性质定理,建立了谭勇先生提出的高次坑棋的数学模型。
-
The matrix =( xi, xjp having the e-th power of the greatest common P-divisorp of xi and xj as its-entry is called the e-th power GCD matrix on S. The matrix = having the e-th power of the least common P-multiple p of xi and xj as its-entry is called the e-th power LCM matrix on 5. We obtained the following results:(1) is nonsingular for any set S;(2) If S is an FC set, then the determined of has formula Det =Jpe(x1)...Jpe, where the function Jpe is the generalized Jordan totient function;(3) A formula of the inverse of is given when S is an FC set;(4) If S is an FC set, then |.
以_P的e次方为第i行j列元素的矩阵称为定义在S上的e次幂GCD矩阵,记为;以_P的e次方为第i行j列元素的矩阵称为S上的e次幂LCM矩阵,记为,我们得到了如下结果:①定义在集合S上的e次幂GCD矩阵是非奇异的;②若S是R上的FC集,则S上的e次幂GCD矩阵的行列式Det=J_p~e(x_1)J_P~e(x_2)…,J_p~e,其中J_p~e为R上的Jordan函数;③当S为FC集时,得到了的逆矩阵~-1的表达式;④证明了当S是FC集时,整除,即等于与R上另一个矩阵的乘积。
-
But a tow-column matix will waste all sorts of space printing, so it better be a two-row matrix.
但是两列的矩阵会浪印刷纸张,所以最好是两行矩阵。
- 更多网络解释与行矩阵相关的网络解释 [注:此内容来源于网络,仅供参考]
-
bordered matrix:增行(列)矩阵;增边矩阵
边缘集 border set | 升阶行列式 bordered determinant | 增行(列)矩阵;增边矩阵 bordered matrix
-
Column vector:行向量
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row vector)运算:将列向量转置(Transpose)后,即可得到行向量(Column vector):)的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定若要检视现存於工作空间(Workspace)的变数,
-
row echelon matrix:行阶梯矩阵
row 行 | row echelon matrix 行阶梯矩阵 | row vector 行向量
-
Get Current Projection Matrix:计算当前投影矩阵
Transpose Matrix 矩阵的行和列对换. | Get Current Projection Matrix 计算当前投影矩阵 | Get Current World Matrix 创建当前世界矩阵
-
row matrix:行矩阵
row 行 | row matrix 行矩阵 | row operation 行运算
-
matrix row:矩阵的行
matrix reduction 矩阵简化 | matrix row 矩阵的行 | matrix switch 矩阵开关
-
row operation:行运算
row matrix 行矩阵 | row operation 行运算 | row rank 行秩
-
row rank:行秩
矩阵的秩(rank),行列式(determinant)与线性方程组的解(solution)的一些关系(理解)如果n*n矩阵A的行列式|A|不等于0,则称A为非退化的(non-degenerative).否则是退化的(generative)线性表示,线性等价,极大线性无关组;(行空间,列空间),行秩(row rank),列秩(column rank),
-
matrix, transpose:矩阵转置,矩阵换行,矩阵换列
matrix theorem 矩阵定理 | matrix transpose 矩阵转置,矩阵换行,矩阵换列 | matrix unit 矩阵单元
-
transpose matrix:矩阵的行和列对换
Shadow Matrix in XY 在xy平面上计算投影矩阵 | Transpose Matrix 矩阵的行和列对换. | Get Current Projection Matrix 计算当前投影矩阵