- 更多网络例句与行列式的展开相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Dixon method was adopted to construct a 22×22 Dixon matrix and then the greatest common divisor of two columns was extracted.
结合矢量法和复数法建立了4个几何约束方程式,使用Dixon结式构造22 22的Dixon矩阵,对两列提取公因式后展开矩阵的行列式得到一元64次多项式方程,回代过程中去掉6组增根后得到58组解。
-
Dixon method was adopted to construct a 22×22 Dixon matrix and then the greatest common divisor of two columns was extracted. After expanding the determinant of the matrix, a 64 degree univariate polynomial equation was obtained and 6 extraneous roots were canceled in the process of solving the other 3 variables.
结合矢量法和复数法建立了4个几何约束方程式,使用Dixon结式构造22×22的Dixon矩阵,对两列提取公因式后展开矩阵的行列式得到一元64次多项式方程,回代过程中去掉6组增根后得到58组解。
-
Firstly, four geometric loop equations are set up by using vector method in complex number fields. Secondly, three constraint equations are used to construct the Dixon resultants, which is a 6×6 matrix and contain two variables to be eliminated. Extract the greatest common divisor of two rows and two columns of Dixon matrix and compute its determinant to obtain a new equation. This equation together with the forth constraint equation can be used to construct a Sylvester resultant.
首先使用矢量法和复数法建立4个几何约束方程式;再使用Dixon结式法对3个方程式构造一个含有2个变元的6×6 Dixon矩阵,提取其中2行列元素的公因式,将新矩阵的行列式展开后得到二元高次多项式方程,该方程与剩下一个方程使用Sylvester结式消去一变元,得到一元高次方程。
-
First,the determinant is regarded as a function of or- der n and denoted by D;Second,the determinant is expanded by row or by column,then the relation in both of Dand subdeterminants will be examined in details to set up certain a recursion,generally speaking,it must be a homogenous or a non homogenous recursion;fi- nally the coefficients of the general solution are found out with the aid.
给出了用递归关系方法求任意 n 阶行列式的值的一般方法:首先,把已知的 n 阶行列式看作为阶数 n 的一个函数,记为 D;其次,按行或按列展开这个行列式,并仔细观察存在于余子式及 D里的关系,建立关于 D的某一递归关系,此关系总为一个齐次的或非齐次的递归关系;最后,借助于 D(0)、D(1)和D(2)等求出递归关系的通解的系数。
- 更多网络解释与行列式的展开相关的网络解释 [注:此内容来源于网络,仅供参考]
-
determinant:行列式
十七世纪日本数学家关孝和提出了行列式(determinant)的概念,他在1683年写了一部叫做>的著作,意思是"解行列式问题的方法",书里对行列式的概念和它的展开已经有了清楚的叙述.
-
expansion in terms of eigenfunction:本寨数展开
expansion in series 级数展开 | expansion in terms of eigenfunction 本寨数展开 | expansion of a determinant 行列式的展开
-
expansion of a determinant:行列式的展开
expansion in terms of eigenfunction 本寨数展开 | expansion of a determinant 行列式的展开 | expansion theorem 展开定理
-
Laplacescher Entwicklungssatz Laplace expansion of a determinant:行列式的拉普拉斯展开
Laplacesche Gleichung Laplace's Equation 拉普拉斯方程 | Laplacescher Entwicklungssatz Laplace expansion of a determinant 行列式的拉普拉斯展开 | Laplace-Verteilung Laplace distribution 拉普拉斯分布
-
expansion theorem:展开定理
expansion of a determinant 行列式的展开 | expansion theorem 展开定理 | expectation 期望值
-
Laplace-Verteilung Laplace distribution:拉普拉斯分布
Laplacescher Entwicklungssatz Laplace expansion of a determinant 行列式的拉普拉斯展开 | Laplace-Verteilung Laplace distribution 拉普拉斯分布 | Laufflaechenkruemmung tread arc radius 踏步曲率