- 更多网络例句与自对偶群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
According to [2], we know that if X is a reflexive Banach space and T is a strongly continuous semigroup on X with the infinitesimal generator A, then the adjoint semigroup T~* is also a strongly continuous semigroup on X* and its infinitesimal generator is A~*, the ajoint operator of A.
由文献[2]我们知道,如果X是一自反Banach空间,那么X上强连续半群T的对偶半群T~*也是X~*上的强连续半群,并且其无穷小生成元为半群T的无穷小生成元的对偶。
-
We know that the c_0 spaces and l_1 spaces are not reflexive spaces, whether the ajoint semigroups on them are strongly continuous semigroups?
序列空间c_0空间、l_1空间都不是自反空间,那么定义在其上的强连续半群的对偶半群是否为强连续半群呢?
- 更多网络解释与自对偶群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
self dual category:自对偶范畴
self dual 自对偶的 | self dual category 自对偶范畴 | self dual group 自对偶群
-
self dual group:自对偶群
self dual category 自对偶范畴 | self dual group 自对偶群 | self intersection number 自交数
-
self intersection number:自交数
self dual group 自对偶群 | self intersection number 自交数 | self loop 自身环
-
self-dual function:自对偶函数
self-driven line-scanning circuit ==> 自激行扫描电路 | self-dual function ==> 自对偶函数 | self-dual groups ==> 自对偶群