- 更多网络例句与自反空间相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In Chapter 2, some new convergence and stability theorems of the Ishikawa iterative procedures with errors for solutions to variational inclusions involving accretive mappings in real reflexive Banach space are proved.
第二章在实自反Banach空间中,证明了增生型变分包含解的具误差项的Ishikawa迭代程序的一些新的收敛性定理和稳定性定理。
-
In this paper We study existence of solutions of variational inequalities in a reflexive Banach Space,and acquire several existence results.
本文研究自反Banach空间中的变分不等方程解的存在性,得到了存在性的几个结果。
-
Ringrose began to study nest algebras in the 1960s, many people have devoted themselves to the study of non-selfadjoint and reflexive operator algebras including nest algebras, commutative subspace lattice algebras, completely distributive subspace lattice algebras and so on, and obtain a lot of beautiful achievements.
自从60年代J.Ringrose开始研究套代数以来,人们对套代数、交换子空间格代数和完全分配子空间格代数等非自伴自反算子代数进行了深入研究,并且取得了大量出色的研究成果。
-
Let X be a reflexive Banach space with both X and X locally uniformly convex. D is a bounded, open, convex subset of X. T∶D→X is a pseudo-monotone operator; C∶D→X is a compact or strongly continuous operator.
何震设X是自反Banach空间且X和X均为局部一致凸空间,D是X的开、有界、凸子集, T∶D→X是伪单调算子(pseudo-monotone), C∶D→X是紧算子或全连续算子。
-
Nest algebra is an important class of non-selfadjoint reflexive operator algebras, which is the natural generalization of upper triangular matrix algebra in infinite dimensional space.
中文摘要:套代数是一类重要的非自伴、自反算子代数,它是上三角矩阵代数在无穷维空间上的自然推广。
-
It is shown that the P-reflexivity and the reflexivity are two equivalent concepts when X is a normed linear space.
还指出当X是赋范线性空间时,P-自反性和自反性是两个等价概念。
-
This paper discusses the necessary and sufficient conditions of normed linear spaces equading reflexive space and the relationship between reflexibility and weakly compact.
讨论了赋范线性空间为自反空间的充分条件和必要条件,并讨论了自反与弱紧的关系。
-
For example, U-space is uniformly regular and which makes it has fixed point property, U-space is uniformly non-square and thus super-reflexive, uniformly convex space and uniformly smooth space are U-spaces, and an Banach space is an U-space iff its dual space is U-space, etc. In1990s, a lot of work had been done on U-space theory, e.g., Tingfu Wang and Donghai Ji introduced the concepts of pre U-property and nearly U-property. Under the structure of Orlicz space, they made systematic investigation of these properties, and gave the criteria for an Orlicz space to have U-property.
U-空间具有一致正规结构进而具有不动点性质;U-空间是一致非方的,进而也是超自反的;一致凸空间和一致光滑空间是U-空间;Banach 空间为U-空间的充要条件是其对偶空间为U-空间,等等。20世纪90年代,国内外学者对U-空间理论做了很多工作,王廷辅,计东海等人先后引入了准U-性质与似U-性质的概念,并在Orlicz空间框架下对有关性质进行了系统研究,完整给出了Orlicz空间具有各种U-性质的判据。
-
We know that the c_0 spaces and l_1 spaces are not reflexive spaces, whether the ajoint semigroups on them are strongly continuous semigroups?
序列空间c_0空间、l_1空间都不是自反空间,那么定义在其上的强连续半群的对偶半群是否为强连续半群呢?
-
This thesis focuses on studying the matrix equa-tion problem systematically, and proposed an abstract algorithm of solving the matrixequation with constraints, and established a strict convergence theory. Using this algo-rithm, we can solve the sets of matrix equation satisfying some constraint conditions,such as symmetric, antisymmetric, centrosymmetric, centroskew symmetric, re?exive,antire?exive, bisymmetric, symmetric and antipersymmetric, symmetric orthogonalsymmetric, symmetric orthogonal antisymmetric, Hermite generalized Hamilton ma-trix;So we can solve the problem with this algorithm, if the set of constrain matrixcan make a subspace in matrix space, and this algorithm also can solve the optimalapproximation and least squares problem. So this abstract algorithm has universal andimportant practical value.
本篇硕士论文系统地研究了此类问题,并找到了求解约束矩阵问题的抽象算法,并建立严格的收敛性理论,利用这一算法可求解约束条件为对称矩阵、反对称矩阵、中心对称矩阵、中心反对称矩阵、自反矩阵、反自反矩阵,对称正交对称矩阵、对称正交反对称矩阵、双中心矩阵、Hermite广义Hamilton矩阵等;可以说只要约束矩阵集合在矩阵空间中构成子空间,都可以考虑用此算法求解,而且这一算法还能把矩阵方程解及其最佳逼近,最小二乘解及其最佳逼近统一处理,因此本文算法有普适性和重要的实用价值。
- 更多网络解释与自反空间相关的网络解释 [注:此内容来源于网络,仅供参考]
-
reflexive banach space:自反巴拿赫空间
reflexive 自反的 | reflexive banach space 自反巴拿赫空间 | reflexive relation 自反关系
-
reflexive locally convex space:自反局部凸空间
自反函数|self-reciprocal function | 自反局部凸空间|reflexive locally convex space | 自反性|reflexivity
-
reflexive normed space:自反赋范空间
reflexive locally convex space 自反局部凸空间 | reflexive normed space 自反赋范空间 | reflexive space 自反空间
-
reflexive normed space:自反赋范空
reflexive Banach space 自反巴拿赫空间 | reflexive locally convex space 自反局部凸空间 | reflexive normed space 自反赋范空
-
partial ordering:自反空间
分项系数:partial factors | 自反空间:Partial ordering | 部分氧化:Partial Oxidation.
-
reflexive space:自反空间
reflexive relation 自反关系 | reflexive space 自反空间 | reflexive subcategory 自反子范畴
-
reflexive subcategory:自反子范畴
reflexive space 自反空间 | reflexive subcategory 自反子范畴 | reflexively partially ordered set 自反半序集
-
semireflexive space:半自反空间
semireflexive 半自反的 | semireflexive space 半自反空间 | semireflexivity 半自反性
-
semireflexive:半自反的
semireductive 半可简约的 | semireflexive 半自反的 | semireflexive space 半自反空间
-
semireflexivity:半自反性
semireflexive space 半自反空间 | semireflexivity 半自反性 | semiregular point 半正则点