- 更多网络例句与群代数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Arad and Blau proved that an abelian table algebra can be viewed as a group algebra of some abelian group G. Chapter 3 of this paper gives the structural theorem of abelian table algebras by defining a group structure in table basis. Furthermore, the structure of elementary abelian table algebras is discussed using the number of composition series of table algebras.
Arad和Blau证明了abel表代数等价于某个有限生成abel群G的群代数,受此启发本文第3节通过定义表基的一个群结构给出了abel表代数的结构定理,并从合成列数目的角度对初等abel表代数进行了细致刻画。
-
The first part of the book is concerned with rings and modules, matrices over a ring, affine geometry and projective geometry over a Bezout domain.
内容包括:基本概念,群表示的特徵标,点群的表示,群代数与对称群的表示,有限群的实表示与复表示,有限群表示在群论中某些应用和有限群的模表示等。
-
Aiming at OQL, we treated type as monoid (collection monoid and primitive monoid), and used monoid comprehension as OQL's intermediate representation. Therefore we can merge the rewrite rules for a number of collection types, then employ monoid comprehension in defining algebraic operators, as cut out the limit that in relational algebra/calculus algebraic operators are only for set.
针对ODMG-2.0的对象查询语言OQL,我们把类型提高到幺群级,然后从幺群概括入手,用幺群概括作为OQL的查询中间表示,统一了多种聚集类型的重写规则,幺群概括还被我们用于定义代数操作符,这使得代数操作符突破了关系代数/演算中只针对集合的局限。
-
We obtain that if any 〓 is discrete or elementaryand 〓 satisfies Condition A,then the algebraic limit G of group sequence 〓is discrete or elementary.
首先,我们不再仅仅考虑离散非初等群集〓的代数极限G,而是离散群或初等群群集〓的代数极限G,我们对〓上〓变换群中斜驶元及其不动点进行了细致研究,注意到任意一个斜驶元存在一个仅仅含有斜驶元的领域,从而证明了初等群群集〓的代数极限G仍然是初等群,进而我们得到了一个代数收敛定理:如果任一〓是离散群或者初等群并且〓满足条件A,那么,群列〓的代数极限G一定是离散群或者初等群。
-
Based on rotation group algebra, a set of new methods for the expression of attitude error are provided.
基于旋转群代数,提出了一套姿态误差表示的新方法。
-
Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.
具体地讲,它们共分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。
-
Eigenvalue matrix for resolving sparse polynomial equations is constructed by deploying well arranged basis in semigroup algebra k.
本文利用半群代数k中良序基,构造了求稀疏多项式方程组解的特征值矩阵,并给出了可以构造方阵的条件。
-
In the study of semigroup, the regular semigroups research occupies the dominant position.
在半群的研究中,正则半群一直占半群代数理论研究的主导地位。
-
Weak Hopf modules can be viewed as comodules over a coring and this implies that the gen...
最后,我们来看一下对偶的情形,弱Hopf代数是有限广群代数的对偶。
-
Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.
具体地讲,它们共(来源:5fbfA02BC论文网www.abclunwen.com)分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。
- 更多网络解释与群代数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
Hopf Algebra , Algebraic Group and Qua ntum:代数与代数群量子群
代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntum | 量子群表示 Representation of Quantum Groups
-
Hopf Algebra , Algebraic Group and Quantum Group:代数与代数群量子群
代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Quantum Group | 量子群表示 Representation of Quantum Groups
-
Hopf Algebra , Algebraic Group and Qua ntumGroup:代数与代数群量子群
代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntumGroup | 量子群表示 Representation of Quantum Groups
-
Hopf Algebra , Algebraic Group and Qua ntum Group:代数与代数群量子群
代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntum Group | 量子群表示 Representation of Quantum Groups
-
group axioms:群公理
group algebra 群代数 | group axioms 群公理 | group comparison 群比较
-
character of algebraic group:代数群的特征[标]
代数群的李代数|Lie algebra of an algebraic group | 代数群的特征[标]|character of algebraic group | 代数群的外尔群|Weyl group of algebraic group
-
group algebra:群代数
他在代数学中引进群代数(Group Algebra)并证明其分解定理. 第一次引进代数中左理想和右理想的概念. 证明了李代数第三基本定理(The third foundamental theorem of Lie Algebra) 及坎贝尔-豪斯多夫公式(1899). 还引进李代数的包络代数(Borel Algebra),
-
skew group algebra:斜群代数
弱斜配对:weak skew pairing | 斜群代数:skew group algebra | 倾斜校正:skew correction
-
semigroup algebra:半群代数
semigroup 半群 | semigroup algebra 半群代数 | semigroup of operators 算子半群
-
semigroup of operators:算子半群
semigroup algebra 半群代数 | semigroup of operators 算子半群 | semihereditary ring 半遗传环