英语人>词典>汉英 : 群代数 的英文翻译,例句
群代数 的英文翻译、例句

群代数

词组短语
group algebra
更多网络例句与群代数相关的网络例句 [注:此内容来源于网络,仅供参考]

Arad and Blau proved that an abelian table algebra can be viewed as a group algebra of some abelian group G. Chapter 3 of this paper gives the structural theorem of abelian table algebras by defining a group structure in table basis. Furthermore, the structure of elementary abelian table algebras is discussed using the number of composition series of table algebras.

Arad和Blau证明了abel表代数等价于某个有限生成abel群G的群代数,受此启发本文第3节通过定义表基的一个群结构给出了abel表代数的结构定理,并从合成列数目的角度对初等abel表代数进行了细致刻画。

The first part of the book is concerned with rings and modules, matrices over a ring, affine geometry and projective geometry over a Bezout domain.

内容包括:基本概念,群表示的特徵标,点群的表示,群代数与对称群的表示,有限群的实表示与复表示,有限群表示在群论中某些应用和有限群的模表示等。

Aiming at OQL, we treated type as monoid (collection monoid and primitive monoid), and used monoid comprehension as OQL's intermediate representation. Therefore we can merge the rewrite rules for a number of collection types, then employ monoid comprehension in defining algebraic operators, as cut out the limit that in relational algebra/calculus algebraic operators are only for set.

针对ODMG-2.0的对象查询语言OQL,我们把类型提高到幺群级,然后从幺群概括入手,用幺群概括作为OQL的查询中间表示,统一了多种聚集类型的重写规则,幺群概括还被我们用于定义代数操作符,这使得代数操作符突破了关系代数/演算中只针对集合的局限。

We obtain that if any 〓 is discrete or elementaryand 〓 satisfies Condition A,then the algebraic limit G of group sequence 〓is discrete or elementary.

首先,我们不再仅仅考虑离散非初等群集〓的代数极限G,而是离散群或初等群群集〓的代数极限G,我们对〓上〓变换群中斜驶元及其不动点进行了细致研究,注意到任意一个斜驶元存在一个仅仅含有斜驶元的领域,从而证明了初等群群集〓的代数极限G仍然是初等群,进而我们得到了一个代数收敛定理:如果任一〓是离散群或者初等群并且〓满足条件A,那么,群列〓的代数极限G一定是离散群或者初等群。

Based on rotation group algebra, a set of new methods for the expression of attitude error are provided.

基于旋转群代数,提出了一套姿态误差表示的新方法。

Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.

具体地讲,它们共分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。

Eigenvalue matrix for resolving sparse polynomial equations is constructed by deploying well arranged basis in semigroup algebra k.

本文利用半群代数k中良序基,构造了求稀疏多项式方程组解的特征值矩阵,并给出了可以构造方阵的条件。

In the study of semigroup, the regular semigroups research occupies the dominant position.

在半群的研究中,正则半群一直占半群代数理论研究的主导地位。

Weak Hopf modules can be viewed as comodules over a coring and this implies that the gen...

最后,我们来看一下对偶的情形,弱Hopf代数是有限广群代数的对偶。

Explicitly, they are consist of three classes: If H is semisimple, then H k* for some finite group; If H is not semisimple and the characteristic of k is zero, then H is isomorphic the dual of the cross product between one so called Andruskiewitsch-Schneider algebra and a group algebra; If H is not semisimple and the characteristic of k is not zero, then H is isomorphic the dual of the cross product between one special algebra and a group algebra.

具体地讲,它们共(来源:5fbfA02BC论文网www.abclunwen.com)分三类:①如果H是半单的,则H同构与一个群代数的对偶;②如果H是非半单的并且基础域的特征是0的话,则H同构一个所谓Andruskiewitsch-Schneider代数与一个群代数交差积的对偶;③如果H是非半单的并且基础域的特征不是0的话,则H同构于某个特定代数与一个群代数交差积的对偶。

更多网络解释与群代数相关的网络解释 [注:此内容来源于网络,仅供参考]

Hopf Algebra , Algebraic Group and Qua ntum:代数与代数群量子群

代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntum | 量子群表示 Representation of Quantum Groups

Hopf Algebra , Algebraic Group and Quantum Group:代数与代数群量子群

代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Quantum Group | 量子群表示 Representation of Quantum Groups

Hopf Algebra , Algebraic Group and Qua ntumGroup:代数与代数群量子群

代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntumGroup | 量子群表示 Representation of Quantum Groups

Hopf Algebra , Algebraic Group and Qua ntum Group:代数与代数群量子群

代数几何 Algebraic Geometry | Hopf代数与代数群量子群 Hopf Algebra , Algebraic Group and Qua ntum Group | 量子群表示 Representation of Quantum Groups

group axioms:群公理

group algebra 群代数 | group axioms 群公理 | group comparison 群比较

character of algebraic group:代数群的特征[标]

代数群的李代数|Lie algebra of an algebraic group | 代数群的特征[标]|character of algebraic group | 代数群的外尔群|Weyl group of algebraic group

group algebra:群代数

他在代数学中引进群代数(Group Algebra)并证明其分解定理. 第一次引进代数中左理想和右理想的概念. 证明了李代数第三基本定理(The third foundamental theorem of Lie Algebra) 及坎贝尔-豪斯多夫公式(1899). 还引进李代数的包络代数(Borel Algebra),

skew group algebra:斜群代数

弱斜配对:weak skew pairing | 斜群代数:skew group algebra | 倾斜校正:skew correction

semigroup algebra:半群代数

semigroup 半群 | semigroup algebra 半群代数 | semigroup of operators 算子半群

semigroup of operators:算子半群

semigroup algebra 半群代数 | semigroup of operators 算子半群 | semihereditary ring 半遗传环