- 更多网络例句与线性算子相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In chapter three, the new concepts of the bifurcation point and asymptotic bifurcation point of compact continuous operators in Menger PN-spaces are introduced. Some sufficient conditions for the existence of the bifurcation point and asymptotic bifurcation point are obtained. And the problems on the intrinsic value and intrinsic element of compact continuous operators are studied in Menger PN-spaces. A series of theorems on the existence of the intrinsic value and intrinsic element are obtained.
第三章,在概率赋范线性空间中提出非线性算子的歧点和渐近歧点的新概念,获得了非线性算子存在歧点和渐近歧点的充分条件;讨论了Menger概率赋范线性空间中非线性算子的固有值和固有元问题,得到了非线性算子存在固有值和固有元的一系列充分条件。
-
In Chapter Three, we use the method of interpolation spline of differential operater to come up with the reproducing kernel in H01 with respect to bounded linear operator in H10. Then we use the reproducing kernel to develop the expression of the best approximating of bounded linear operator in H10 and prove its convergence.
第三章中,对于H_0~1中的有界线性算子,用微分算子插值样条函数的方法给出了H_0~1空间中的再生核,利用此再生核给出了H_0~1上的有界线性算子的最佳逼近的表达形式,并证明了其收敛性。
-
In[6],Prof Gong and Wang Libin discussed the property of Ho and K when A is an bounded linear operator, he also study the spectral theory of compact operator with these twe subspaces.
龚为邦教授和王利彬博士在[6]中讨论了算子A为一般有界线性算子时子空间H_0和K的性质,并利用H_0和K研究了紧算子的谱理论。
-
We first show some properties of such operators and give an explit description about the image of a linear bounded operator on a linear normed space. Then based on these results, we show the mean ergordic theorem on a C*-bial-gebra and get a sufficient and necessary condition for a linear functional to be Haar measure. Finally we discuss the sufficent conditions for the existence of Haar measure on C*-bialgebras.
本文首先通过考察这样算子的性质和刻画赋范线性空间中连续线性算子的像集的性质,证明了C*-双代数中的一个平均遮历定理,得到了C*-双代数中的线性泛函是 Haar 测度的充分必要条件;利用遍历定理和这个充分必要条件探讨了C*-双代数中 Haar 浏度存在的一些充分条件。
-
The content of this course is divided into four chapter, the normed linear space and bounded linear operator on the normed space; the character of finite dimensional linear space; the basic theorems on Banach space.
本课程主要分为四章,赋范线性空间与内积空间;赋范线性空间上的有界线性算子,有限维赋范线性空间的特征。Banach空间中的基本定理:泛函存在定理,一致有原理,开映象,闭图象、逆算子定理。
-
Let A" denote the commutant of a bounded linear operator S on H and R denote the collection of all operators in A" which are compact and upper triangular operators with diagonal sequence being zeros. In this paper, we show that if A"= CI + R, the K_0-group of A" is isomorphic to the integer group.
本文指出若H上的有界线性算子S的换位代数A′=CI+R,其中C是复数域,I是H上的单位算子,R是所有与S可交换的对角线为0的紧上三角有界线性算子的集合,则K_0A′
-
This chapter defines the conceptsof P linear operator,〓 linear operator and 〓 linear operator by extending theconcepts of P matrix,〓 matrix and 〓 matrix to the linear operator from thelinear space of symmetric matrices to itself.In this chapter,we also present a path-following method and a potential reduction method for solving general linear matrixcomplementary problems,and analyzes their computational complexities undersuitable assumptions.
本章将第二章中给出的P矩阵、〓矩阵及P矩阵的概念推广到由实对称矩阵构成的向量空间到其自身的线性算子L上,得到了P线性算子、〓线性算子及P线性算子的概念,给出了求解一般线性矩阵互补问题的路径跟踪法和势函数约减法,并在L为P线性算子的假设下分析了这些算法的计算复杂性。
-
In this paper, the relations between the uniform topology, weak operator topology and strong operator topology in operator space of Hilbert space and the continuity of several operations are discussed.
讨论了Hilbert空间上全体有界线性算子所成的算子空间上一致拓扑,弱算子拓扑,强算子拓扑之间的关系,以及一些运算在这些拓扑下的连续性。
-
This paper studies the invariant, which is the linear preserving problem based on generalized inverse of matrices. The generalized inverse of matrices and the research status of preserving problems of generalized inverse are outlined. In the basis of deeply understanding the basic knowledge of linear maps, the definition, characteristics of generalized inverse and decomposition of matrix, the author analyzes the decomposition form of preserving idempotence and preserving tripotence in the PID, then studies on the linear maps form of preserving group inverses of symmetric matrices.
本文研究的不变量是矩阵广义逆线性算子的保持问题,概述了广义逆矩阵,广义逆保持问题的研究现状,在对线性映射的基础知识,广义逆矩阵的定义、性质和矩阵的分解深入理解的基础上,深入分析了保幂等、保立方幂等矩阵在主理想整环上的分解形式,继而研究了保对称矩阵群逆的线性算子形式。
-
The process of our study links some of the most basic questions about C〓 with beautiful classical results from analyticfunction theory. For instance, it is essential Littlewood subordination theorem that assures that composition operators act boundedly on many analytic function spaces. And there are close connections between the compactness of C〓 and the existence of angular derivatives of ψ at points of 〓D. It involves the classical Julia-Careatheodory theorem, Denjoy-Wolff theorem and Nevanlinna counting functions and so on. It makes many old theorems in analytic-function theory getting some new meanings, and bestows upon functional analysis an interesting class of linear operators. This thesis consists of six chapters as follows: Chapter 1 is a preparatory in nature.
从而建立了C〓的算子性质与解析函数论中许多漂亮的经典结果之间的联系,如许多解析函数空间上复合算子的有界性本质上往往是著名的Littlewood从属原理,复合算子的紧性与其诱导映射在边界〓D上的角导数之间有着紧密的联系等等,这样自然而然地涉及到经典函数论中的Julia-Caratheodory定理,Denjoy-Wolff定理及Nevanlinna计数函数等等一些结果,并以此赋予函数论中许多古老问题以新意,同时也为泛函分析提供了一类十分具体的线性算子。
- 更多网络解释与线性算子相关的网络解释 [注:此内容来源于网络,仅供参考]
-
antilinear operator:反线性算子
antilinear 反线性 | antilinear operator 反线性算子 | antinode 反节点
-
bounded linear operator:有界线性算子
bounded linear functional | 有界线性泛函 | bounded linear operator | 有界线性算子 | bounded linear transformation | 有界线性变换
-
closable linear operator:可闭线性算子
clopen set 闭开集 | closable linear operator 可闭线性算子 | closable operator 可闭算子
-
completely continuous linear operator:完全连续线性算子
completely continuous function 完全连续函数 | completely continuous linear operator 完全连续线性算子 | completely continuous mapping 全连续映射
-
continuous linear operator:连续线性算子
连续线性群 continuous linear group | 连续线性算子 continuous linear operator | 连续映射 continuous mapping
-
linear operator:线性算子
linear measure 线性测度 | linear operator 线性算子 | linear optimization 线性最优化
-
multilinear operator:多线性算子
衰减算子:recession operator | 多线性算子:multilinear operator | 线性算子:linear operator
-
multilinear operator:多重线性算子
多重线性泛函|multilinear functional | 多重线性算子|multilinear operator | 多重线性型|multilinear form
-
singular linear operator:奇异线性算子
singular line element 奇异线素 | singular linear operator 奇异线性算子 | singular linear transformation 奇异线性变换
-
sublinear operator:次线性算子
遗传算子:genetic operator | 次线性算子:sublinear operator | 算符次序:operator ordering