- 更多网络例句与线性空间的基相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Template and instance can describe the data pattern accessed by program. Template and instance are defined by generation subset of the canonical basis of linear space.
文中首先指出算法的访存模式可用模板和实例来刻画,并用线性空间规范基的生成子集来定义它们。
-
It is proved that each separated L-fuzzy locally convex topological vector space is linearly homeomorphic to a projective limit of a family of L-fuzzy normed spaces.
考察了格值模糊拓扑线性空间中归纳拓扑的若干性质,得到了由单一fuzzy线性序同态确定的归纳拓扑的远域基刻画。
-
This text is from the linear space made of arrays of numbers of n dimension to study the basis of subspace .
本文是从最简单的n维数组作成的线性空间入手,研究子空间的交的基与维数的确定方法。
-
Base vectors are selected for formulating the nonlinear mapping. An approximate explicit expression is formed by using the Nystrm method for nonlinear mapping which is not available originally. The data in the nonlinear input space is mapped into some linear feature subspace and fisher linear discriminant analysis is computed for the mapped data.
首先提取基向量;然后采用Nystrm方法,以基向量为训练样本,将形式未知的非线性映射近似表达为已知形式的非线性映射,这种近似的非线性映射将变量由非线性的输入空间转换到线性的特征子空间;最后对映射数据进行线性Fisher判别分析。
-
The mentioned control scheme can effectively control two joint of space manipulator to stably track the desired trajectory in joint space. It has obvious advantages that with needless feedback and measured the position, velocity, acceleration, attitude angle velocity and attitude angle acceleration of the floating base. At the same time, no requirements for the dynamic equations of the system are linearly dependent on inertial parameters.
文中提到的控制方案能够有效地控制漂浮基空间机械臂的载体姿态及机械臂关节,可以协调地完成期望的轨迹运动,并具有不需要反馈和测量空间机械臂载体的位置、移动速度、移动加速度,同时也不要求系统动力学方程关于系统惯性参数呈线性函数关系的显著优点。
-
Then we apply it to a C-module V, where V is a n-dimensional vector space and the operator from C×V to V is defined by a linear transformation T of V, then we get a unique factorization of V and a right basis under which the transformation matrix of T is T's Jordan canonical form.
然后把它应用到一个具体的C-模V,其中V是n维线性空间,C×V到V的映射由V中的一个线性变换T定义,从而得到V的一个唯一分解,再结合线性代数有关知识给出V的一组基,T在这组基下的变换矩阵恰为T的Jordan标准形。
-
In this paper, a new approximated model for linear time-varying systems is deduced via general orthogonal polynomials expansion by basis transformation in projection space.
通过在投影空间中的基变换,导出了一种基于广义正交多项式展开的线性时变系统的新的近似模型。
-
The representation of all the solutions for the equation Lv=f is obtained through constructing a standard orthogonal basis of null space N.
通过构造零空间的一组标准正交基,得到了线性算子方程Lv=f的所有解的表达形式。
-
The substitution is made of the interval wavelet basis for the compact one in order toproduce the basis of Sobolev space with the lower condition number,which will improvethe speed and the accuracy of the linear system made by wavelet Galerkin method.
我们在小波Galerkin法中用区间小波替代J.Xu用的I.Daubechies的紧支正交小波来生成Sobolev空间及H1的小波基,使基的相关性大大减小,进一步使刚度矩阵的条件数减少,从而提高了线性方程组求解的速度和精度。
-
However, to construct a tensor product orthonomal wavelet basis in L〓, 2〓-1 different functions are used. Furthermore, it is concluded that the family, obtained by dilations and translations from this radial wavelet as well as their linear combinations, can constitute an orthonomal basis in L〓. The conclusion is a major breakthrough in multidimensional wavelet analysis.
从而得到:由一个径向小波的伸缩、平移系及其线性组合可以构成n维平方可积函数空间L〓的规范正交基,这个结果将当前利用张量积方法构造n维正交小波基所需要的2〓-1个不同的函数降为仅需要一个径向小波函数,这在理论上是一个重大突破;构造了同时具备局部支撑和无穷次连续可微性质的高维不可分小波的例子,这是不同于I。
- 更多网络解释与线性空间的基相关的网络解释 [注:此内容来源于网络,仅供参考]
-
basis for homology:同爹
basis for cohomology 上同爹 | basis for homology 同爹 | basis of linear space 线性空间的基
-
basis of linear space:线性空间的基
basis for homology 同爹 | basis of linear space 线性空间的基 | basis of vector space 向量空间的基
-
basis of vector space:向量空间的基
basis of linear space 线性空间的基 | basis of vector space 向量空间的基 | basis replacement procedure 基替换过程
-
basis:基
没有人意识到相位存在与所有系统之中,而且随着规范对称性的发现,相位拥有了越来越重要的物理意义. 还要提到的是,在实际计算中,我们通常会为一个线性空间选取一组"基"(basis)或者说是坐标,坐标的选择往往可以让计算变得非常方便.
-
Orthogonal basis:正交基
[简介](重定向自正交基)跳转到: 导航, 搜索在线性代数中,一个内积空间的正交基(orthogonal basis)是元素两两正交的基. 称基中的元素为基向量. 假若,一个正交基的基向量的模长都是单位长度1,则称这正交基为标准正交基(Orthonormal basis). 无
-
orthonormal basis:标准正交基
更特殊地,在希尔伯特空间(Hilbert space))中(或者略一般地,在线性内积空间(inner product space)中),一组标准正交基(orthonormal basis)就是一个完全而且正交的集合.
-
test of a linear hypothesis:线性假设的检验
线性假设的典范型|canonical form of a linear hypothesis | 线性假设的检验|test of a linear hypothesis | 线性空间的基|basis of linear space