- 更多网络例句与线性映射的核相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper the topological properties of solution set of non-autonomous differential inclusions are discussed,and the fact that the mild solution set of Cauchy is a retract of a convex subset of a Banach space is proved.
讨论了半线性微分包含解的拓扑性质,证明了非自治情况下其适度解集是一Banach空间的凸子集的收缩核,且收缩映射连续依赖于初值。
-
This method uses the kernel function to map the nonlinear space into a linear high dimension space.
该方法使用核函数完成非线性空间到高维线性空间的映射,避免了高维空间中的数据处理和非线性映射函数的使用。
-
As for the undivided linear sample space, the kernel function is needed to map onto another high dimension linear space.
对于线性不可分的样本空间,需要寻找核函数,将线性不可分的样本集映射到另一个高维线性空间。
-
In this algorithm, first, the nonlinear kernel mapping is used to map the face data into an implicit feature space, and then a linear transformation which produces orthogonal basis functions is performed to preserve locality geometric structures of the face image.
该算法首先利用核的方法提取人脸图像中的非线性信息,并将其投影在一个高维非线性空间,在保证各向量正交的同时,通过局部保持投影算法做一线性映射,从而更好地提取人脸非线性局部邻域结构特征。
-
Optimization; parametric quadratic convex programming; set-valued map; directional derivative; linear stability; solution-set map; parametric linear programming; error bound; subdifferential map; lower locally directionally Lipschitzian; upper locally di-rectionally Lipschitzian; locally directionally Lipschitzian; convex function; quasidiferential; kernelled quasidiferential; quasi-kernel; star-kernel; star-diferential; Penot diferential; subderivative; superderivative; epiderivative; set-valued optimization; set-valued analysis; subdifferential; optimization condition;ε-dual; scalization; generalized subconvexlike-cone;ε-Lagrange multiplier
基础科学,数学,运筹学最优化;集值映射;方向导数;线性稳定;最优解集映射;参数线性规划;参数凸二次规划;误差界;次微分映射;下局部方向Lipschitzian;上局部方向Lipschitzian;局部方向Lipschitzian;凸函数;拟微分;核拟微分;拟核;星核;星微分; Penot-微分;上导数;下导数; Epi-导数;集值优化;集值分析;集值映射的次微分;最优性条件;广义锥次类凸;ε-对偶;数乘;ε-Lagrange乘子
-
The SVM method is based on the theory of structural risk minoration. It can map the sample space to a higher feature space by selecting an optimal Kernel function, and get a linear regression in this higher feature space.
中文摘要:支持向量机方法是基于结构风险最小化原理提出的,通过采用合适的核函数将样本空间映射到一个高维特征空间,再在高维特征空间进行线性回归。
- 更多网络解释与线性映射的核相关的网络解释 [注:此内容来源于网络,仅供参考]
-
kernel of integral operator:积分算子核
kernel of an integral equation 积分方程的核 | kernel of integral operator 积分算子核 | kernel of linear mapping 线性映射的核
-
kernel of a integral equation:积分方程核
同构映射的核 kernel of a homomorphism | 积分方程核 kernel of a integral equation | 线性映像的核 kernel of linear mapping
-
kernel of linear mapping:线性映射的核
kernel of integral operator 积分算子核 | kernel of linear mapping 线性映射的核 | kernel preserving functor 核保存函子
-
kernel of a linear mapping:线性映射的核
线性映射|linear mapping | 线性映射的核|kernel of a linear mapping | 线性映射的秩|rank of a linear mapping
-
kernel preserving functor:核保存函子
kernel of linear mapping 线性映射的核 | kernel preserving functor 核保存函子 | key 链
-
linear mapping preserving zero product:保零积的线性映射
保核值映射:Kernel-range preserving mapping | 保幂等的线性映射:linear mapping preserving idempotents | 保零积的线性映射:linear mapping preserving zero product
-
rank of a linear mapping:线性映射的秩
线性映射的核|kernel of a linear mapping | 线性映射的秩|rank of a linear mapping | 线性映射的转置|transpose of a linear map
-
rank of a linear mapping:线性映射的秩
线性映射的核||kernel of a linear mapping | 线性映射的秩||rank of a linear mapping | 线性映射的转置||transpose of a linear map
-
kernel of a linear mapping:线性映射的核
线性映射||linear mapping | 线性映射的核||kernel of a linear mapping | 线性映射的秩||rank of a linear mapping