- 更多网络例句与级数的和相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Property 2 (Term-by-Term Integration) Suppose that is the sum of a power series on interval ;that is,Then, if is interior to ,and the radius of convergence of the integrated series is the same as for the orginal series.
性质 2 幂级数的和函数在其收敛域上可积,并有逐项积分公式,,逐项积分后所得到的幂级数和原级数有相同的收敛半径。
-
Mathematical analysis is largely taken up with studying the conditions under which a given function will result in a convergent infinite series.
数学的分析常被当作研究形成收敛无穷级数的和的给定函数的条件。
-
Mathematical analysis is largely taken up with studying the conditions under which a given function will result in a convergent in finite series.
数学的分析常被当作研究形成收敛无穷级数的和的给定函数的条件。
-
The rearrangement characteristics of the Dirichlet series' sum-function with the same type is also discussed.
讨论了Dirichlet级数的和函数的型保持不变的重排特征。
-
Definition The infinite series converges and has sum if the sequence of partial sums converges to ,that is .If diverges, then the series diverges. A divergent series has no sum.
定义如果级数的部分和数列有极限,即,则称无穷级数收敛,这时极限叫做这级数的和,并写成;如果没有极限,则称无穷级数发散。
-
A relatively direct method is expounded in this paper to prove the termwise differentiation of power series, and a simple method is expressed to calculate the Fourier coefficient.
文摘:用比较直接的方法证明幂级数的和函数在收敛域内可以逐项微分的公式;并得到了计算傅立叶系数的一种简便方法。
-
Property 1 The sum function of a power series is continuous on the interior of its convergence set.
性质 1 幂级数的和函数在其收敛域上连续。
-
Integral of one variable functions, improper integral and its convergence properties.
本课程的主要内容包括:1 各种极限运算,其中包括数列极限、函数极限以及上、下极限;2 一元函数的微分学,包括微分和导数的运算法则、微分中值定理及其应用等;3 一元函数的积分和广义积分及其收敛性;4 级数及其收敛性,包括数值级数的收敛性和函数项级数的各种运算和性质;5 多元函数的微分学及其应用,其中很多方面与一元函数的微分学近似,需要注意它们之间的区别;6 多元函数的积分学,包括多重积分的性质与计算,多重积分的的应用等;7 曲线、曲面积分及其应用;8 含参变量积分的计算与性质;9 Fourier 级数及其应用,等等。
-
Property 3 (Term-by-Term Differentiation) Suppose that is the sum of a power series on interval ;that is
性质3 幂级数的和函数在其收敛区间内可导,且有逐项求导公式
-
Via generalizing the Cauchy method we obtain a new method,called the modified Cauchy method.By means of this method we establish two bilateral _3ψ_3 and _4ψ_4 series summation formulae,two four-term summation and transformation formulae for unilateral _3φ_2-series and bilateral _3ψ_3-series,and two five-term summation and transformation formulae for unilateral _3φ_2-series and bilateral _3φ_3-series,which contain many known results as their special cases,such as non-terminating q-Saalschütz summation formula,Bilateral _6ψ_6 series summation formula of Bailey,non-terminating Watson transformation formula and some transformations of _3φ_2-series etc.
通过对Cauchy方法的推广,我们得到修正的Cauchy方法,采用这个方法分别得到两个双边的_3ψ_3和_4ψ_4基本超几何级数的求和公式、单边_3φ_~(2-)级数和双边_3ψ_(3~-)级数的两个四项求和变换公式和两个五项求和变换公式,它们包括许多已有的结果为特例,如非终止的q-Saalschütz求和公式、Bailey的very-well-poised双边级数_6ψ_6求和公式、非终止的Watson变换公式和一些关于单边_3φ_(2~-)级数的变换公式等。
- 更多网络解释与级数的和相关的网络解释 [注:此内容来源于网络,仅供参考]
-
summability theory of divergent series:发散级数的可和性理论
summability 可和性 | summability theory of divergent series 发散级数的可和性理论 | summable 可和的
-
generalized sum:广义级数的和
弱解 generalized solution | 广义级数的和 generalized sum | 广义对称群 generalized symmetric group
-
product sum of geometric series:几何加权级数 的乘积和
灰度残差平方和:gray"s deviation square sum | 相位和与相位差:phase sum and difference. | 几何加权级数 的乘积和.:product sum of geometric series.
-
sum of infinite series:无穷级数的和
sum of distribution 分布和 | sum of infinite series 无穷级数的和 | sum of maintenance 维护费
-
sum of numerical series:数值级数的和
sum of events 事件的和 | sum of numerical series 数值级数的和 | sum of order types 序型的和
-
sum of events:事件的和
sum index 和指数 | sum of events 事件的和 | sum of numerical series 数值级数的和
-
sum of order types:序型的和
sum of numerical series 数值级数的和 | sum of order types 序型的和 | sum of powers 幂和
-
Sum of products:积之和;Riemann的和
自同态的和 sum of endomorphism | 积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series
-
sum of series:级数的和
sum of sequences 集和 | sum of series 级数的和 | sum of squares 平方和
-
sum of series:级数的和;级数的值
积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series | 平方和 sum of squares