英语人>词典>汉英 : 约当代数 的英文翻译,例句
约当代数 的英文翻译、例句

约当代数

词组短语
Jordan algebra
更多网络例句与约当代数相关的网络例句 [注:此内容来源于网络,仅供参考]

In the light of the complex, high-level and non-linear feature of the mathematical model which describe the transport of the coalbed methane, this paper study the fully-implicit solving method of the mathematical model in detail. Based on the complexity of the algebraic equations which are formed eventually, according to the alternating direction implicit difference pattern, this paper use the iterative method and the fully main element Gauss-Jordan eliminating method to solve equations, which is to use the iterative method to determine coefficient matrix and use the fully main element Gauss-Jordan method to solve th linear algebraic equation group, at the same time of studying the solving method of the mathematical model, according to the devising requirement of FORTRAN77 program structure, this paper draw up computer program and form the corresponding computer model, and verify the validity and reliability of the model in theory by operating the model.

重点研究了模型内、外边界及有关参数的处理,针对描述煤层甲烷运移的数学模型是一个复杂、高阶非线性数学模型的特点,详细研究了模型的全隐式求解方法,根据最后形成的代数方程组的复杂性,按交替方向隐式差分格式,采用迭代与全选主元高斯约当消去法相结合的方法求解方程:即确定系数矩阵采用迭代法,求解线性方程组时采用全选主元高斯约当消去法,在研究模型解法的同时按FORTRAN结构化程序设计的要求,编制计算机程序,形成相应的CBMRS计算机模型,并通过模型的运行从理论上证明了模型的正确性与可靠性。

In this paper, new classes of linear block codes over finite fields of the algebraicinteger ring of quadratic number fields Qd~(1/2 modulo irreducible elements with norm p or p~2 are presented. These codes can correct one error which takes from the cyclic subgroup of the multiplicative group of the finite fields. The results presented in this paper extend the corresponding results of previous papers.

在处理适用于二维信号的线性分组码时,我们考虑类数为1的有理数域二次扩域Qd~(1/2的代数整数环,利用范数为p或p~2的不可约元构造有限域,给出剩余类域的一组完全陪集代表元系,从而构造出一类有限域上的线性分组码,当错误取值于有限域乘法群的一个循环子群时,所得到的适用于二维信号的线性分组码可以纠单个错,推广了文[14-16]的结果。

In terns of the general theory of linear algebra, reduced matrix for the operator M are similar to a Jordan matrix J, namely M = S~lJS .

当约化矩阵M不可对角化时,根据线形代数的一般理论,这时约化矩阵M与一个约当矩阵J相似,即M=S~(-1)JS,其中S是关于k,q_0的任意可逆矩阵。

Adopting generalized Jordan block and algebra equivalence transform method, all of the transfer functions at different load points can be transformed to state-space description with time variable. The steady robustness of three different mode of control systems were researched by mathematic analysis. It shows that: for the high order inertia controlled object with the characteristic of nonlinear and time-variable that described by the set of transfer functions, the Luenberger function observer established according to its any algebra equivalence state-space description, if some conditions can be met, there would be a matrix of T with n′n satisfied the Sylvester matrix equation TA- FT=GC.

采用广义约当块及代数等价变换方法,可将分段的传递函数描述转换为变参数的状态空间描述,对3种典型控制系统的稳定鲁棒性所进行的理论研究表明,对同一组传递函数描述的具有非线性和时变特性的高阶惯性受控对象,依据其任一代数等价的状态空间描述所构建的Luenberger函数观测器,在满足一定的条件时,存在n′n解阵T满足Sylvester矩阵方程TA- FT=GC。

更多网络解释与约当代数相关的网络解释 [注:此内容来源于网络,仅供参考]

exceptional curve:例外曲线

excenter 外心 | exceptional curve 例外曲线 | exceptional jordan algebra 例外约当代数

exceptional jordan algebra:例外约当代数

exceptional curve 例外曲线 | exceptional jordan algebra 例外约当代数 | exceptional point 例外点

exceptional point:例外点

exceptional jordan algebra 例外约当代数 | exceptional point 例外点 | exceptional value 例外值

special homology manifold:特殊同滴

special group 特殊群 | special homology manifold 特殊同滴 | special jordan algebra 特殊约当代数

special homology manifold:非凡同滴

special group 非凡群 | special homology manifold 非凡同滴 | special jordan algebra 非凡约当代数

jordan algebra:约当代数

joint distribution 联合分布 | jordan algebra 约当代数 | jordan automorphism 约当自同构

special jordan algebra:特殊约当代数

special homology manifold 特殊同滴 | special jordan algebra 特殊约当代数 | special linear group 特殊线性群

special jordan algebra:非凡约当代数

special homology manifold 非凡同滴 | special jordan algebra 非凡约当代数 | special linear group 非凡线性群

reduced Jordan algebra:约化约当代数

reduced join 约化联接 | reduced Jordan algebra 约化约当代数 | reduced kVA tap 低负荷抽头

jordan automorphism:约当自同构

jordan algebra 约当代数 | jordan automorphism 约当自同构 | jordan canonical form theorem 约当标准型定理