英语人>词典>汉英 : 算子的指数 的英文翻译,例句
算子的指数 的英文翻译、例句

算子的指数

词组短语
index of operator
更多网络例句与算子的指数相关的网络例句 [注:此内容来源于网络,仅供参考]

When seismic wavelet is in non-minimum phase , we can make it have smaller phase by doing exponential weighting . As for nonwhite noise problem of reflection coefficient , we may employ logarithmic power spectrum to estimate the autocorrelation function of seismic wavelet , then obtain seismic wavelet and deconvolution opera .

当地震子波为非最小相位时,可利用指数加权方法使之小相位化;对于反射系数非白噪声问题,本文提出利用对数功率谱来估算地震子波的自相关函数进而求取地震子波以及反褶积算子的方法;对于理想的期望子波,本文采用"宽带雷克子波"作为期望输出子波。

Based on the improved Bajsanski-Bojanic parabolic method and the related properties of integral operators, a global saturation theorem for the mixed exponential type integral operatorLnis established.

研究了该类混合指数型积分算子的性质,利用改进的Bajsanski-Bojanic抛物线技巧及积分算子的有关性质,建立了一类混合指数型积分算子的整体饱和定理。

So, the saturation results of some operators including Baskakov operator can be obtained easily, hence laying a basis for studying the approximation transformation theoremof the mixed exponential type integral operators, and presenting a new method for studying the saturation problems.

这样,包含Baskakov型在内的相关积分算子的饱和结果便可以很容易得到,为研究混合指数型积分算子的逼近转化定理奠定了基础,也为研究算子的饱和问题提供了新的方法。

In order to solve the problem,We proposed a simple formula for computing paraxial travel time of single-way wave operator. The formula is based on the forward and inverse transform between time-space domain to frequency-wavenumber domain and from vector field to exponential manifold. The travel time are expressed as polynomials of the horizontal offset between the two points, and the single-square-root operator in frequency-wavenumber domain are expressed as polynomials of wavenumber. Coefficients of travel time polynomials and that of single-square-root operator are related each other and calculated by Lie algebraic integrand, exponential map and the saddle-point method.

针对此,基于时间空间域到频率波数域和向量场到指数流形上的正反变换,提出了计算单程波算子旁轴走时的简便公式,将走时表示成空间变量(地面点到地下相点的水平距离)的多项式,将频率波数域单平方根算子表示成波数的多项式,运用Lie代数积分、指数映射和鞍点法将走时多项式的系数与单平方根算子的系数联系起来,运用单平方根算子的系数计算走时多项式的系数。

In order to solve the problem, We proposed a simple formula for computing paraxial travel time of single-way wave operator. The formula is based on the forward and inverse transform between time-space domain to frequency-wavenumber domain and from vector field to exponential as polynomials of wavenumber. Coefficients of travel time polynomials and that of single-square-root operator are related each other and calculated by Lie algebraic integrand, exponential map and the saddlepoint method.

针对此,基于时间空间域到频率波数域和向量场到指数流形上的正反变换,提出了计算单程波算子旁轴走时的简便公式,将走时表示成空间变量(地面点到地下相点的水平距离)的多项式,将频率波数域单平方根算子表示成波数的多项式,运用Lie代数积分、指数映射和鞍点法将走时多项式的系数与单平方根算子的系数联系起来,运用单平方根算子的系数计算走时多项式的系数。

In this letter, a new concept of the exponential evolution operator is introduced.

本文介绍了一种指数进化算子的概念。

Firstly,by using the estimating methodfor the compact embedding operators(from weighted Sobolev space to the weighted〓space),we obtain a necessary and sufficient condition for the discreteness of thespectrum of certain differential operators.Secondly,based on the property of thespectrum of difinitizable operators on the Krein space,we consider the left definitedifferential equations with middle deficiency indices,and give a completecharacterization for self-adjoint(J-self-adjoint)differential operators in theindefinite inner product space 〓.Especially,we prove that all the J-self-adjoint differential operators are definitizable.

我们首先运用加权Sobolev空间到加权〓空间嵌入算子紧性的判别方法,证明一类加权自伴微分算子具有离散谱的充要条件;然后,基于Krein空间上可定化算子谱的性质,对于具中间亏指数的左定型微分方程,建立其相应的微分算式在不定度规空间〓上所生成自伴算子的完备性刻画(特别证明了J-自伴微分算子具有可定化性)。

By constructing different quotient spaces,using the method of symplectic geometry,the self-adjoint extensions of symmetric differential operators in the direct sum spaces for the different deficiency indices at(2,2)singular points was discussed. The classification and description of complete Lagrangian submanifold that correspond with self-adjoint domains of second order differential operators were given.

由于对称微分算子在端点处的亏指数取值情况不同,当微分算子在端点处的亏指数均取(2, 2)时,通过构造商空间,应用辛几何的方法讨论了直和空间的对称微分算子的自共轭扩张问题,并给出了与二阶微分算子自共轭域相对应的完全Lagrangian子流型的分类与描述。

Next, the existence of random fixed point for random semiclosed 1-set-contractive operator is discussed.

第二章首先研究了随机半闭1-集压缩算子的随机不动点指数。

In the third chapter,We study some geometric properties and spectral propertiesof the Jacobi operator on a solvable extension G of Heisenberg groups H.In the firstsection,we give the definition of G and some fundamental geometric properties on G.Inthe second section,we discuss the Integrability of certain subbundles and the geometricstructure of the induced foliations in case of integrability.In the third section,we studythe spectral properties of the Jacobi operator of G.

可解李群与类对称空间亦密切相关,Damcek-Ricci空间即是广义Heisenberg的一可解扩张李群,在第三章中,我们构造且研究了Heisenberg群的一可解扩张李群G的几何性质,第一节讨论了G的曲率,李指数映射,整体坐标等基本几何性质;第二章研究了TG的某些子丛的可积性及可积时诱导叶片的几何结构;第三节给出了G的Jacobi算子的特征值和相应的特征子空间。

更多网络解释与算子的指数相关的网络解释 [注:此内容来源于网络,仅供参考]

deficiency index:亏指数

换句话说,当闭对称算子的两个亏指数(deficiency index)相等时,才存在自共轭扩张(extension). 但是,如果这个算子存在POVM分解,则即使亏指数不相等,同样存在自共轭 dilation.

grouped data:分类资料

带算子的群 group with operator | 分类资料 grouped data | 类指数 grouped index number

index of operator:算子的指数

index of inertia 惯性指数 | index of operator 算子的指数 | index of speciality 特性的指数

index of speciality:特性的指数

index of operator 算子的指数 | index of speciality 特性的指数 | index set 指标集