- 更多网络例句与算子同构相关的网络例句 [注:此内容来源于网络,仅供参考]
-
We show that Jordan multiplicative bijective maps on prime operator algebrasmust be additive. As its application, we show that every Jordan * multiplicative bijec-tive map on every factor C~* algebra is a C~* isomorphism or a conjugate C~* isomorphism,in the special case of B, it must be a *-isomorphism or a conjugate *-isomorphism.We also prove the additivity of Jordan multiplicative bijective maps on nest algebras.
证明了素算子代数上Jordan可乘双射的可加性,利用这一结论刻画了因子C~*代数上的Jordan*可乘双射,我们的结果表明这样的映射一定是C~*同构或共轭C~*同构;证明了套代数上的Jordan可乘双射的可加性。
-
We discuss the relation between elementary maps and ring isomorphisms, andwe give a characterization of elementary maps on stndard operator algebras on Banachspaces, JSL-algebras and nest algebras. For Jordan-triple elementeary maps, we provetheir additivity on a class of ring and show a relation of them with Jordan isomorphisms. Furthermore. we describe the Jordan elementary maps on standard operator algebrasand nest algebras. We also study the semi-Jordan elementary maps on effect algebrasand the space of self adjoint operators.
研究了算子代数上的初等映射和环同构的关系,完全刻画了Banach空间上标准算子代数,JSL代数和套代数上的初等映射;讨论了Jordan-triple初等映射的可加性以及它和Jordan同构的关系,进而完全刻画了Banach空间上标准算子代数和套代数上的Jordan-triple初等映射;刻画了效应代数和自伴算子空间上的semi-Jordan初等映射。
-
We also show that thc linking C~*-algcbra of the TRO-univcrsal free product of two TRO\'s is~*-isomorphic to thc universal free product of the linking C~*-algcbras of thc two TRO\'s.In addition, inspircd by thc concept of full amalgamated frcc product of C~*-algebras, by using thc full amalgamated free product of thc linking C~*-algcbras of ternary rings of operators,we introduce the definition of TRO-full amalgamatcd free product,and give its construction,which is provcd to satisfy the univcrsal propcrty.
另外,受C~*-代数全融合自由积概念的启发,利用算子三元环的连接C~*-代数的全融合自由积,本章把全融合自由积的概念扩展到了算子三元环上,引入了算子三元环全融合自由积的定义,给出了它的一个构造,证明了这种构造(来源:ABC论文3b3b3b网www.abclunwen.com)的确具有"泛性质",并且证明了两个算子三元环的TRO-全融合自由积的连接C~*-代数*-同构于这两个算子三元环的连接C~*-代数的全融合自由积。
-
The fundamental problem of the geometry of matrices can be interpreted as a theorem on graph automorphism of the graph on a certain kind of matrices, and it also has practical application in the linear preserver problems which are the research area in matrix and operator theory.
矩阵几何的基本定理也可以叙述为图论中的图的自同构定理;并且它在矩阵和算子的保持问题中有很好的应用。
-
Lastly,Using the extension theory of〓-algebras founded and developed by Brown-Douglas-Fillmore in 70s,inparticular,using the homotopy invariance of the extensions and the indexformule of Toeplitz operator matrices,the paper characterized the automorphismgroup of the continuous function symbol Toeplitz 〓-algebra in terms of thetopological degrees of the continuous mappings on the n-dimensional sphere.
最后,本文利用Brown-Douglas-Fillmore在七十年代建立并发展起来的C*-代数扩张理论,尤其是扩张的同伦不变性,以及Toeplitz算子矩阵的指标公式,通过球面上连续映射的拓扑度,刻划了高维球面Hardy空间上连续符号Toeplitz 〓代数的自同构群。
-
Pisier\'s results,under tree martingale valued space X is isomorphic toan a-uniformly convex space (2≤a<∞),some quasi-normal or normal inequalitiesof a-variation maximal operator and a-conditional variation maximal operator of X-valued predictable tree martingales are identified.
同时,用G.Pisier's结果在树鞅取值空间X同构于a一致凸Banach空间条件下,证明了几个X-值树鞅α-方极大算子和a-条件方极大算子的拟范数不等式与范数不等式。
-
The so-called AT-algebras are inductive limits of finite direct sums of matrices over the extension algeras of circle algebra by K, where K is the C~*— algebra of all compact operators on a separable infinite dimensional Hilbert space.
若V_*与V_*同构,且保持单位元等价类;T与T仿射同胚,且同构映射与同胚映射相容,则存在E与E′的同构导出上述同构和同胚,所谓AT-代数即为圆代数通过κ的本质酉扩张的矩阵代数的有限直和的归纳极限,这里κ为可分的无限维复Hilbert空间上的紧算子全体,不变量中的V*为三变元Abel半群,T为迹态空间,[1]为单位元所在的Murray-von Neumann等价类,r_E为连接映射。
-
At present time thesemaps have become important objectors and tools in studying operator algebras. Nestalgebras is a class of most importaut non-semisimple, non-prime and non-self adjointoperator algebras. Their finite dimensional models are upper triangular matrix algebras,but the infinite dimensional models are more complex.
本文在已有成果的基础上,研究了一些类型的算子代数上的Jordan可乘映射,Jordan-triple可乘映射,Lie-skew可乘映射,初等映射,Jordan-triple初等映射,Lie导子,Jordan导子,局部导子和局部同构及其刻画问题。
-
For an abitrary set X, appropriate order relations on WCL (the set of all weak closure operators), WIN (the set of all weak interior operators), WOU (the set of all weak exterior operators), WB (the set of all weak boundary operators), WD (the set of all weak derived operators), WD*(the set of all weak difference derived operators), WR (the set of all weak remote neighborhood system operators) and WN (the set of all weak neighborhood system operators) can be defined respectively, which make WCL, WIN, WOU, WB, WD, WD*, WR and WN to be complete lattices that are ismorphic to CS(X,CS is the set of all closure systems on X.
证明了可以在WCL(X上的弱闭包算子的全体)、 WIN(X上的弱内部算子的全体)、 WOU (X上的弱外部算子的全体)、 WB (X上的弱边界算子的全体)、WD、 WD*(X上的弱差导算子的全体)、 WR(X上的弱远域系算子的全体)和WN(X上的弱邻域系算子的全体)上定义适当的序关系,使它们成为与CS(X,〖JX-*5[JX*5]同构的完备格其中CS(X是给定集合X上的闭包系统的全体。
- 更多网络解释与算子同构相关的网络解释 [注:此内容来源于网络,仅供参考]
-
isometric operator, isometric mapping:等距算子
等距曲线|equidistant curve | 等距算子|isometric operator, isometric mapping | 等距同构|isometry
-
operator automorphism:算子同构
operator algebra 算子代数 | operator automorphism 算子同构 | operator domain 算子域
-
analytic automorphism operator:解析自同构算子
解析子群|analytic subgroup, connected Lie subgroup | 解析自同构算子|analytic automorphism operator | 解耦|decoupling
-
operator domain:算子域
operator automorphism 算子同构 | operator domain 算子域 | operator equation 算子方程
-
operator homomorphism:算子同态
operator function 算子函数 | operator homomorphism 算子同态 | operator isomorphism 算子同构
-
operator isomorphism:算子同构
operator homomorphism 算子同态 | operator isomorphism 算子同构 | operator method 符号法
-
operator method:符号法
operator isomorphism 算子同构 | operator method 符号法 | operator norm 算子范数
-
order interval:有序区间
order homomorphism operator 序同态算子 | order interval 有序区间 | order isomorphic field 序同构域
-
regular ring:正则环
冯.诺伊曼在F.J.默里(Murray)的协助下,又写出了题为"论算子环"(On rings of operators)的系列文章.正则环(regular ring)是冯.诺伊曼引入的另一新概念:A是有单何的表示有着密切联系:连续几何L与某正则环A的主左理想构成的格同构.也就是说,