- 更多网络例句与移位密码相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的"良性"分布与高阶相关性(correlation of order κ),这两类序列具有"优"的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
This changeable modulus Feedback Shift Register password array discussing that in cutture is safe to a certain extent.
文中讨论的这种变系数反馈移位寄存器密码序列在一定程度上是安全的。
-
The linearity shift register is the stream cipher important constituent, this procedure realizes this method.
线性移位寄存器是流密码的重要组成部分,该程序就是实现该方法。
-
This dissertation investigates the construction of pseudo-random sequences (pseudo-random numbers) from elliptic curves and mainly analyzes their cryptographic properties by using exponential sums over rational points along elliptic curves. The main results are as follows:(1) The uniform distribution of the elliptic curve linear congruential generator is discussed and the lower bound of its nonlinear complexity is given.(2) Two large families of binary sequences are constructed from elliptic curves. The well distribution measure and the correlation measure of order k of the resulting sequences are studied. The results indicate that they are "good" binary sequences which give a positive answer to a conjecture proposed by Goubin et al.(3) A kind of binary sequences from an elliptic curve and its twisted curves over a prime field F_p. The length of the sequences is 4p. The "1" and "0" occur almost the same times. The linear complexity is at least one-fourth the period.(4) The exponential sums over rational points along elliptic curves over ring Z_ are estimated and are used to estimate the well distribution measure and the correlation measure of order k of a family of binary sequences from elliptic curves over ring Z_.(5) The correlation of the elliptic curve power number generator is given. It is proved that the sequences produced by the elliptic curve quadratic generator are asymptotically uniformly distributed.(6) The uniform distribution of the elliptic curve subset sum generator is considered.(7) We apply the linear feedback shift register over elliptic curves to produce sequences with long periods. The distribution and the linear complexity of the resulting sequences are also considered.
本文研究利用椭圆曲线构造的伪随机序列,主要利用有限域上椭圆曲线有理点群的指数和估计讨论椭圆曲线序列的密码性质——分布、相关性、线性复杂度等,得到如下主要结果:(1)系统讨论椭圆曲线-线性同余序列的一致分布性质,即该类序列是渐近一致分布的,并给出了它的非线性复杂度下界;(2)讨论两类由椭圆曲线构造的二元序列的&良性&分布与高阶相关性(correlation of order κ),这两类序列具有&优&的密码性质,也正面回答了Goubin等提出的公开问题;(3)利用椭圆曲线及其挠曲线构造一类二元序列,其周期为4p(其中椭圆曲线定义在有限域F_p上),0-1分布基本平衡,线性复杂度至少为周期的四分之一;(4)讨论了剩余类环Z_上的椭圆曲线的有理点的分布估计,并用于分析一类由剩余类环Z_上椭圆曲线构造的二元序列的伪随机性;(5)讨论椭圆曲线-幂生成器序列的相关性及椭圆曲线-二次生成器序列的一致分布;(6)讨论椭圆曲线-子集和序列的一致分布;(7)讨论椭圆曲线上的线性反馈移位寄存器序列的分布,线性复杂度等性质。
-
For example, if the two methods used are the Playfair cipher and simple columnar transposition, if transposition is used first, the Playfair cipher can still be attacked, because it takes each input letter to a limited number of substitutes; if the Playfair cipher is used first, multiple anagramming, although now much more difficult, is still possible because a text enciphered by Playfair still has digraph frequencies marked well enough to allow a correct match to be detected.
例如,如果这两种方法用的是playfair密码和简单的柱状移位,如果移位是用第一, playfair密码仍然可以被攻击,因为它需要每个输入信有限数量的代用品;如果playfair密码是用来首先,多重anagramming ,虽然现在困难得多,仍然有可能因为一个文本加密由playfair仍然有向图的频率明显做得不够好,让一个正确的匹配,以进行检测。
-
This paper is based on the background of the intrinsic relationship among FCSR sequences, 2-adic numbers and rational numbers with odd prime numbers as denominators. Some new cryptological properties of the FCSR sequences are proved.
文中以进位移位寄存器序列、2—adic数和分母为奇素数的有理数之间的内在联系为背景,证明了FCSR序列的一些新的密码学性质。
- 更多网络解释与移位密码相关的网络解释 [注:此内容来源于网络,仅供参考]
-
frame hopping:跳码[在翻译中跳过某些密码子]
frame 框,框架,读框 | frame hopping 跳码[在翻译中跳过某些密码子] | frame shift 移码,读框移位
-
transposition:换位
另一种是换位(transposition)加密法,明文中的每个字母没有改变,但它们在密文中希尔密码(Hill Cipher)简介: 希尔密码是基于矩阵的线性变换, 希尔密码相对于前面介绍的移位密码以及放射密码而言, 其最大的好处就是隐藏了字符的频率信息,
-
rame overlapping:读框重叠
frame hopping|跳码[在翻译中跳过某些密码子] | rame overlapping|读框重叠 | frame shift|移码,读框移位
-
Transposition Cipher:移位密码
transposition changeover box ==> 交叉转换盒 | transposition cipher ==> 移位密码 | transposition circuit ==> 交叉电路