英语人>词典>汉英 : 积级数 的英文翻译,例句
积级数 的英文翻译、例句

积级数

词组短语
product series
更多网络例句与积级数相关的网络例句 [注:此内容来源于网络,仅供参考]

However, the second associated Legendre function is too complicated to compute, so a simple and practical ellipsoidal harmonic series expansion is introduced, and the series solution and integral solution of the Dirichlet boundary value problem and the Neumann boundary value problem under ellipsoidal boundary are given.

鉴于展开式中第二类缔合勒让德函数的计算较为复杂,接着引入一种形式简单、实用的椭球谐级数展开,介绍了椭球界面下Dirichlet边值问题和Neumann边值问题的级数解和积分解。

Property 2 (Term-by-Term Integration) Suppose that is the sum of a power series on interval ;that is,Then, if is interior to ,and the radius of convergence of the integrated series is the same as for the orginal series.

性质 2 幂级数的和函数在其收敛域上可积,并有逐项积分公式,,逐项积分后所得到的幂级数和原级数有相同的收敛半径。

They are the deflection w, the rotations of the normal to the undeformed median surface Φx,Φy and the force function F. In the present paper these dependent functions are expressed as generalized double Fourier series with beam eigenfunctions as general terms.

本文中将这四个独立的函数表示为广义傅里叶级数,选用了两个变量分离的梁本征函数之积构成广义傅里叶级数的通项,通过梁本征函数中的待定常数使所选级数预先满足简支、固支或弹性支持边界条件。

Energy density and particle density in high energy heavy-ion collisions are calculated with infinite series expansion method and Gauss-Laguerre formulas in numerical integration separately, and the results of these two methods are compared, the higher terms and linear terms in series expansion are also compared.

分别用无穷级数展开方法和数值积分计算中的高斯拉盖尔求积法对高能重离子碰撞中能量密度和粒子密度数值进行计算,并对结果及级数展开中的高次项和一次项的大小进行了比较。

Hilbert space and generalized Fourier series in Hilbert space,etc.

Hilbert空间与广义Fourier级数,主要讲授内积空间内积空间中的正交系,投景定理,与广义Fourier级数。

By means of traditional criterions of generalized integral's convergence and divergence, this paper, from the analysis of integrated function's nature, discovers a series of new criterions, which are briefer and more suitable: on the aspect of generalized integral for functions of a single variable, through the investigation of integrated function, together with the inner relationship between positive series and generalized integral in infinite interval under the condition of positive function, it gives several criterions of generalized integral's convergence and divergence, which are similar to positive series' criterions of convergence and divergence.

本文从分析被积函数本身所具的性质出发,借助传统的广义积分敛散性判别方法,发现1系列更简捷适用的新判别方法:单变量函数广义积分方面,通过考察被积函数,结合正项级数与正函数情形下无穷区间上广义积分的内在联系,给出了几个与正项级数敛散性判别法相类似的广义积分敛散性判别方法;多变量函数广义积分方面,着重讨论了广义2重积分和广义3重积分,结合被积函数的特点,运用比较判别法和柯西判别法,本文给出了判别广义2重积分收敛的1种新方法。

For the partial products generation, the novel method of Booth encoding combined with partial products generating is put up, which can directly map the multiplicand and multiplicator to partition products without generating the BOOTH encoding results. For the optimization of Wallace tree adding, the series formulas of full-adder and 4-2 Compressor realization are introduced to guidance the selection. For the non-bias round, forwarding round disposal in Wallace tree method is brought forward to avoid the final multi-bit adder. Also, the idea of delay-oriented partition of the MAC frame is put up to achieve the perfect match with multi-pipeline DSP architecture.

提出了一种构建多模式算法最小并集的MAC通用结构思想与一种划分MAC通用结构以适应多流水级DSP处理器设计的通用MAC设计方法;对于BOOTH编码和部分积产生,提出了直接建立被乘数与部分积的多路选择映射关系的BOOTH编码和部分积联合产生方法;对于最优Wallace树型加法实现,提出了全加器和4-2 compressor电路实现Wallace树加法所需的关键加法路径级数公式以指导实现选择;对于无偏舍入处理,提出了在Wallace树处理舍入问题的舍入运算前置方法;提出了以时延为导向的MAC各部分单元组合与流水线匹配具体方法。

Firstly, a two-dimension tensor product space is constructed, in which reproducing kernel exists. Secondly a multiresolution analysis is constructed in the reproducing kernel space. Then an orthonormal basis in is obtained. Thus,the reproducing kernel space can be expressed by wavelets spaces. Wavelets approximation formula and sampling formula can also be obtained in the space. Besides, the wavelets approximation formula is simple and easy for calculation. That completes the theory of multiresolution analysis in finite interval fully and provides theoretical base and algorithm for application.

首先,构造二维张量积空间,并证明该空间具有再生核;其次在再生核空间中,建立多尺度分析,获得该空间的一个标准正交基,使得再生核空间可以由小波空间来刻画,进而得到小波级数和相应的采样公式,而且给出的小波级数形式简单易于数值分析,进一步完善了有限区间上的多尺度分析方法,也为实际应用提供了良好的理论基础和算法。

In SMFSIA/CAG, to increase computational efficiency in solving the matrix equation, both the speed of the iterative convergence and the matrix-vector multiplication are picked up based on iterative theory. The extended formula of the high order Taylor's series about the horizontal distance is derived. The relationship between the Taylor's series or the neighborhood distance and the efficiency of the arithmetic are analyzed.

在SMFSIA/CAG中,基于迭代法的原理,通过加快迭代收敛速度和加速矩阵向量积两个方面对该算法进行了改进,推导了关于平面展开的高阶泰勒级数展开公式,并对近场相关距离和泰勒级数展开阶数对算法效率的影响进行了分析。

This method is tectonic on foundation of nuclear function theory special and linear space, each issue of rank nucleus of progression of the Volterra that seek solution changeover uses output observation vector to be in to beg Xierbaite the some in the space child the umbriferous problem on the space, make originally complex, hard calculative is nonlinear in the approachs a problem to be built in place compose linear space of Volterra progression of the system solve ably with the means that accumulates inside vector, gave out specific algorithm.

该方法在核函数理论基础上构造非凡线性空间,将求解Volterra级数的各阶核的新问题转换为求用输出观测向量在希尔伯特空间中某一子空间上的投影新问题,使原本复杂、难以计算的非线性系统的Volterra级数的逼近新问题在所构建的线性空间中巧妙地以向量内积的方式解决,并给出了具体算法。

更多网络解释与积级数相关的网络解释 [注:此内容来源于网络,仅供参考]

integrability:可积性

数学分析的核心问题主要有四个: 收敛性 (convergence), 连续性 (continuity), 可微性 (differentiablity) 和可积性 (integrability), 其中收敛性主要是针对序列 (sequenve) 和级数 (series) 而言的, 而后三种性质则主要是就函数 (function) 而言的.

matrix power series:矩阵幂级数

matrix operator 矩阵算子 | matrix power series 矩阵幂级数 | matrix product 矩阵积

matrix product:矩阵积

matrix power series 矩阵幂级数 | matrix product 矩阵积 | matrix representation 阵表示

product representation of equation:方程的积表示

product preserving functor 积保存函子 | product representation of equation 方程的积表示 | product series 积级数

product series:积级数

product representation of equation 方程的积表示 | product series 积级数 | product set 积集

Sum of products:积之和;Riemann的和

自同态的和 sum of endomorphism | 积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series

Sum of products:积之和

11735,"sum of endomorphisms","自同态的和" | 11736,"sum of products","积之和" | 11737,"sum of series","级数的和;级数的值"

sum of series:级数的和;级数的值

积之和;Riemann的和 sum of products | 级数的和;级数的值 sum of series | 平方和 sum of squares

sum of series:级数和

sum of products 积和=> 乘积之和 | sum of series 级数和 | sum of spiral vector 螺旋矢量和

summable function:可和函数;可积函数

发散级数的可和性理论 summability theory of divergent series | 可和函数;可积函数 summable function | 可和级数 summable series