- 更多网络例句与积分微分算子相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then by using the Riemann's function of the operator and constructing an auxiliary problem, an integrodifferential equation equivalent to former problem is got.
然后利用该算子的Riemann函数,通过构造辅助问题,得到了一个等价积分微分方程。
-
Then by using the Riemanns function of the operator and constructing an auxiliary problem, an integrodifferential equation equivalent to former problem is got.
然后利用该算子的Riemann函数,通过构造辅助问题,得到了一个等价积分微分方程。
-
And the general thoughts in which we can deal with the nonlinear integro-differential equations in Banach space.
全文共分为三章,在第一章中,我们对具有凹凸性的非线性算子的研究现状及我们在本文中将要做的工作进行了阐述;同时给出了我们处理本文所讨论的非线性积分-微分方程的总体思路。
-
The main subjects of the volume include:- spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers;- multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations;- Hankel operators and forms;- operator algebras;- the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations;- approximation in holomorphic spaces.
卷包括:主要课程-定期微分算子和延迟方程谱分析,稳定控制器,傅立叶乘数;-多变量算子理论,模型论,换位解除定理,coisometric变现;- Hankel算子和形式;-算子代数;-在奇异积分和谐波分析,奇异积分算子和积分表示贝尔曼函数方法;-在全纯空间近似。
-
The introduction of displacement operator, derivation operator, integral operator and the operator, such as differential calculus operator and the definition of the form of computing, will be applied to similar derivation formula gives Newton a Kete Si formula and Bernstein theorem Law said the operator, and form is derived; linear differential equations is the operator solution.
有没有高手可以帮我翻译下这段话啊???引入位移算子、求导算子、积分算子和差分算子等微积分算子的定义及其形式运算,将其应用于近似求导公式;给出牛顿一柯特斯公式和伯恩斯坦定理的算子法表示,并进行形式推导;给出线性常微分方程的算子解法。
-
The main results are as follows: the relations between local fractional integrated semigroups and the corresponding Cauchy problem, global fractional integrated semigroups and regularized semigroups are given; introduction of the notion of regularized resolvent families, and the generation theorem and analyticity criterions for regularized resolvent families are obtained; the spectral inclusions between fractional resolvent family and its generator, and the approximation for fractional resolvent families in the cases of generators approximation and fractional orders approximation; elliptic operators with variable coefficients generating fractional resolvent family on L^2 by using numerical range techniques; and the L^p theory for elliptic operators with real coefficients highest order are obtained by Sobolev''s inequalities and the a priori estimates for elliptic operators; and a kind of coercive differential operators generates fractional regularized resolvent family by applying the Fourier multiplier method, functional calculus and some basic properties of Mittag-Leffler functions.
主要结论是:给出了局部分数次积分半群和相应的Cauchy问题的关系以及分数次积分半群和正则半群的关系;引入了正则预解族的概念,并给出了其生成定理和解析生成法则;给出了分数次预解族与其生成元的谱包含关系,并研究了在生成元逼近和分数阶逼近两种情况下相应的预解族的逼近问题;利用数值域方法证明了具变系数的椭圆算子在L^2上生成分数次预解族;利用Sobolev不等式和椭圆算子的先验估计证明了具变系数的椭圆算子在其最高项系数为实数时在L^p上生成分数次预解族;运用Fourier乘子理论、泛函演算和Mittag-Leffler函数证明了一类强制微分算子可以生成分数次正则预解族,并给出了该预解族的范数估计。
-
In chapter 1, as a preparative knowledge, the main results about symmetry theoryand Wus method are introduced, in addition some fundamental definitions, such as trans-formation group, infinitesimal operator, prolongation, first integral, infinitesimal criterionfbr invariance of an ODE, characteristic set are recalled.
第一章中作为预备知识简单介绍了对称理论和吴方法,并给出了一些基本概念和理论,如变换群、无穷小算子、算子延拓、首次积分、微分方程在对称下不变的判别准则和微分特征列集算法。
-
Firstly, this paper introduces a function space defined by Bouziani and takes the inner product in space L2 of the linear equation and an integrodifferential operator.
首先引入一个Bouziani定义的空间,利用该空间的一些特点,将原线性方程的两端在L~2空间内与一个积分微分算子作内积。
-
This book reviews the many areas of numerical analysis, including the configuration polynomial, finite difference, factorial polynomials, summation, Newton formula, operator and configuration polynomial, Cheung section, close polynomials, TaylM more item type, interpolation, numerical differentiation, numerical integration, and with the series, differential equations, differential equations, least squares polynomial approximation, minimax polynomial approximation, rational function approximation, triangular approximation, non-linear algebra, linear equations, linear programming, boundary value problems, MonteCarIo methods and so on.
本书综述了数值分析领域的诸多内容,包括配置多项式、有限差分、阶乘多项式、求和法、Newton公式、算子与配置多项式、祥条、密切多项式、TaylM多项式、插值、数值微分、数值积分、和与级数、差分方程、微分方程、最小二乘多项式逼近、极小化极大多项式逼近、有理函数逼近、三角逼近、非线性代数、线性方程组、线性规划、边值问题、MonteCarIo方法等内容。本书的特色主要表现在利用例题及大量详细的题解来透彻地阐明所述内容的内涵,同时附有大量的补充题以便读者进一步巩固和深化从书中获得的数值分析知识。
-
In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.
在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。
- 更多网络解释与积分微分算子相关的网络解释 [注:此内容来源于网络,仅供参考]
-
integro differential operator:积分微分算子
integro differential equation 积分微分方程 | integro differential operator 积分微分算子 | intension 内涵
-
ordinary dirichlet series:狄利克雷级数
ordinary differential operator 常微分算子 | ordinary dirichlet series 狄利克雷级数 | ordinary integral element 寻常积分元素
-
hyperfunction:超函数
佐藤干夫的主要成就是创立一个全新的数学领域��代数分析(Algebraic Analysis),其起点是佐藤干夫创造的超函数(hyperfunction)理论. 超函数是广义函数(法文直译为分布)的推广,它同傅里叶积分算子一起是线性偏微分方程理论的主要工具.
-
integral of a function:函数的积分
integral of a differential equation 微分方程的积分 | integral of a function 函数的积分 | integral operator 积分算子
-
mutually disjoint:互不相交;互斥
互积分微分算子 mutual integral-differential operator | 互不相交;互斥 mutually disjoint | 互等边多角形 mutually equilateral polygons
-
weak reflexive singular operator:弱自反奇异算子
超奇异积分-微分方程:hyper-singular integral-differential equation | 弱自反奇异算子:weak reflexive singular operator | 奇点:singular points