- 更多网络例句与矩阵半群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
From [1], Every transition function is a positive strongly continuous semigroup of contractions on l\, but it isnt a strongly continuous semigroup on l_∞- In fact, the sufficient and necessary condition for a transition function to be a strongly continuous semigroup on l_∞ is that the q—matrix Q is an uniformly bounded q—matrix on l_∞- This is the trivial case.
由Anderson[1]知道转移函数P是l_1空间上正的强连续压缩半群,但P一般来说不是l_∞空间上的强连续半群,而P是l_∞上强连续半群的充要条件是q—矩阵Q是l_∞。
-
This paper researches linear maps preserving orthogonality,obtains the linear maps preserving othrogonality,it is either a rank -declining or rank -keeping map or a map with nilpotent element in its codomain.
利用分块成向量的方法证明了MnMn(F为域F上所有n×n矩阵构成的乘法半群上的n×n拟正交矩阵组至多含有n个矩阵,利用方程组的解的理论证明了Mn中与给定矩阵A构成两两拟正交矩阵组的矩阵个数不超过n-Rank+1,从而得到Mn上保持拟正交性的线性映射φ要么是降秩的或者保秩的映射,要么φ的值域中含有幂零元。
-
Calculating the functions of the matrix exponential e has special significance in the theory of linear systems and the theory of semi-groups. Especially, in the modern control theory, no matter the equation is homogeneous or non-homogeneous, the result depends on the calculation of the matrix exponential e.
矩阵指数函数e的计算在线性系统理论及半群理论中有着特殊的作用,在现代控制理论中,无论是齐次方程还是非齐次方程的求解,主要取决于矩阵指数函数e的计算和近似。
-
In chapter 2, we prove that an abundant semigroup satisfying the regularity is a locally E-solid semigroup if and only if it is an E-local isomorphic image of some abundant Rees matrix semigroup AM over an E-solid abundant semigroup with entries of the sandwich matrix P being regular elements of T.
第二章,我们证明了满足正则性条件的富足半群是局部E-solid(quasi-adequate,R~*-unipotent)半群当且仅当它是某个富足Rees矩阵半群RM的E-local同构像,其中sandwich矩阵的P元素是T中的正则元。
-
This leads to Rees matrix representation theorems of some generalized completely simple semigroups.
本文首先建立了某类U-半超富足半群的Rees矩阵表示定理,并由此得到了若干广义完全单半群的Rees矩阵表示定理。
-
Lastly , from a primitive rpp semigroup with zero , we built up a type A blocked Rees matrix semigroup and showed a semigroup S is a primitive rpp semigroup if and only if S is isomorphic toa type A blocked Rees matrix semigroup.
该结果的一个特例就是可消幺半群上的Rees矩阵半群。
-
By the definition of Green-relation and the analogue of generalized Greens lemma, this paper first studied some properties of H-class、 D--class of rpp semigroups, then by left S-system 、-bisystem and tensor product, we described a blocked Rees matrix semigroup. Especially, the paper studied primitive rpp semigroups .
本文利用在rpp半群上定义的广义Green~(l-关系及相应的广义Green定理,首先研究了rpp半群H~(l-类、D~(l-类的若干基本性质,然后以左S-系、-双系和张量积作为工具,刻画了块Rees矩阵半群结构,最后从带零的本原rpp半群出发,构造出A型块Rees矩阵半群,并证明了一个半群S为本原rpp半群,当且仅当S同构于一个A型块Rees矩阵半群。
-
Eigenvalue matrix for resolving sparse polynomial equations is constructed by deploying well arranged basis in semigroup algebra k.
本文利用半群代数k中良序基,构造了求稀疏多项式方程组解的特征值矩阵,并给出了可以构造方阵的条件。
-
The so-called AT-algebras are inductive limits of finite direct sums of matrices over the extension algeras of circle algebra by K, where K is the C~*— algebra of all compact operators on a separable infinite dimensional Hilbert space.
若V_*与V_*同构,且保持单位元等价类;T与T仿射同胚,且同构映射与同胚映射相容,则存在E与E′的同构导出上述同构和同胚,所谓AT-代数即为圆代数通过κ的本质酉扩张的矩阵代数的有限直和的归纳极限,这里κ为可分的无限维复Hilbert空间上的紧算子全体,不变量中的V*为三变元Abel半群,T为迹态空间,[1]为单位元所在的Murray-von Neumann等价类,r_E为连接映射。
-
Firstly we introduce the concept of Rees matrix semigroups without zero i.e.
矩形群、左群都是极其重要的半群,在Mario[2]中这两种半群都已有了很好的刻画,本文后两章将给出推广了的矩形群和左群的详细刻画,全文共分三章,具体内容如下:第一章主要对推广之后Rees矩阵半群的刻画进行了描述,在这一章里先介绍了无零Rees矩阵半群的概念,它是一类矩阵半群M=MT;I,?
- 更多网络解释与矩阵半群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
matrix ring:矩阵环
matrix representation 阵表示 | matrix ring 矩阵环 | matrix semigroup 矩阵半群
-
matrix semigroup:矩阵半群
matrix ring 矩阵环 | matrix semigroup 矩阵半群 | matrix series 矩阵级数
-
matrix series:矩阵级数
matrix semigroup 矩阵半群 | matrix series 矩阵级数 | matrix solution 矩阵解
-
Ordered monoid:偏序么半群
层次结构:ordered structure | 偏序么半群:Ordered monoid | 相容次序矩阵:consistently ordered matrix