- 更多网络例句与相容方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then a quasi -Newton decent numeric algorithm for solving the consistent equations is presented and applied to solving the simultaneous simulation problem.
先运用多项式分解,将严格正则线性系统同时镇定问题化成一组相容非线性方程的求解,然后提出了一种求解相容非线性方程组的拟牛顿下山数值算法,并应用该方法求解同时镇定问题。
-
In the third chapter, I first gain the equation of the large deflection considering the plate that has original deflection, that is the equation of the compatibility and the bend deflection of the plate which has the effect of initial curvature.
第三章中首先叙述了考虑初挠度的薄板的大挠度微分方程,即相容方程和板的挠度方程、得出膜应力方程,再通过瑞次法求解板的挠度方程,得出在有初挠度情况下。
-
Third, by the analogy of multi-point supported continuous beam, the equation for live load deflection was deduced.
不必在吊杆处断开;推导了基于虚拟梁法的新形式相容方程,以建立主缆任意2个连续状态之间的联系;利用多点支承连续梁的求解方法,给出了加劲梁的活载挠度方程。
-
Exive least-squares solutions, antire?exive least-squares solutions, bisymmetric least-squaressolutions, symmetric and antipersymmetric least-squares solutions, symmetric or-thogonal symmetric least-squares solutions, symmetric orthogonal antisymmetricleast-squares solutions and their optimal approximation to the linear matrix equa-tion AX = B, and solve them successfully. 2. For Problem II, we can convert it to another problem of finding the least-squares solutions with the least norm of a new consistent matrix equation. Onthe base of the solutions of Problem I we can apply the iterative method to get
本文所构造的迭代法的优点在于先利用法方程变换将求矩阵方程的最小二乘解转化为求一个相容矩阵方程的解的问题,再利用迭代法对于任意给定的初始矩阵进行迭代,均可在有限步内迭代出所求问题的一个解;可将问题II转化为求新方程的极小范数解的问题,同样用迭代法求解,从而系统且全面地解决了问题I、II在约束矩阵类如中心对称、中心反对称、自反矩阵、反自反矩阵、双对称、对称次反对称、对称正交对称、对称正交反对称矩阵中的最小二乘解及其最佳逼近问题。
-
Kinetic equations of multibody systems with scleronomic constraint s are projected along the feasible and unfeasible directons of the constiaints respectively,and generalized accelerations of the systems are decomposed along the two directons using the bases of constraint matrix and its orthocomplement.
通过约束矩阵及其正交补的两组基,将定常约束多体系统的动力学方程沿与约束相容和不相容的两个方向上投影,并将系统的广义加速度沿这两个方向进行分解,得到描述系统运动的纯微分方程和求约束力的公式,同时提出了违约修正的一种方法。
-
It also pointed out that thesolution set of the equation is inconsistent.
3首次提出了逻辑方程的概念,给出了逻辑方程的解的存在性定理,并详细分析了逻辑方程解的性质,指出对于一般的逻辑方程而言,其解集合是不相容的。
-
The solutions of ProblemⅠ,ⅡandⅢare discussed by using the generalized conjugate gradient method. When the equation is consistent, the solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are successfully found; When the equation is inconsistent, the least-squares solutions such as symmetric, skew-symmetric, centrosymmetric, centroskew symmetric, reflexive, antireflexive, bisymmetric or symmetric and antipersymmetric are also found successfully. The generalized conjugate gradient method has the following traits:(1) It can judge automatically the information of solutions.
利用广义共轭梯度法,讨论了问题Ⅰ、Ⅱ和Ⅲ解的情况:当方程相容时,研究了方程的一般解、对称解、中心对称解、自反矩阵解、双对称解、对称次反对称解及其最佳逼近等问题;当方程不相容时,研究了方程的最小二乘一般解、最小二乘对称解、最小二乘中心对称解、最小二乘自反矩阵解、最小二乘双对称解、最小二乘对称次反对称解及其最佳逼近等问题。
-
In this paper, an iterative algorithm is proposed to find the generalized centrosymmetric solution pair of matrix equation AXA~T+BYB~T=C. The solvability of the matrix equation can be determined automatically in the iterative process. When the matrix equation is consistent, the solution pair can be obtained within finite steps in the absence of round-off errors.
该论文运用迭代方法研究了矩阵方程的一般中心对称解解,特别地,当矩阵方程是相容的时,经过有限步就能求出该方程的一般中心对称解解,然后以此为主要依据进一步研究了矩阵方程的最优近似解,最后举例验证了该论文的主要结论。
-
A+bx+cy , X=0, Y=0 It satisfies the compatibility equation 4 φ=0 find the stress components by σx=2φ/y2=0 σy= 2φ/x2=0 τxy=-2φ/xy=0 find the surface force components bys=X=0s =Y=0 σστ a linear stress function corresponds to the case of no surface forces and no stress .
a+bx+cy , X=0 Y=0 满足相容方程 4 φ=0 由下式求出应力分量σx=2φ/y2=0 σy= 2φ/x2=0 τxy=-2φ/xy=0 由下式对给定坐标的物体求出面力分量s=X=0s =Y=0 σστ确定所设定的φ能解决的问题为:任意物体无确定所设定的能解决的问题为:体力,无面力,无应力。
-
With the aid of the solution matrix of Lax equation satisfied by the eigenfunctions, elliptic variables are introduced suitably, which give a direct relation between the soliton equation and the resulting compatible ordinary differential equations.
文中发展了一个分离技术,由此可将连续的和离散的2+1维孤子方程分解为相容的常微分方程或相容的常微分方程和离散流的演化。
- 更多网络解释与相容方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
incomplete beta function:不完全函数
incompatible equations 不相容方程 | incomplete beta function 不完全函数 | incomplete equation 不完全方程
-
consistent equations:相容方程
consistent element 相容元 | consistent equations 相容方程 | consistent estimate 相容估计,一致估计
-
inconsistent fiducial distribution:不一致置信分布
inconsistent equations 不相容方程 | inconsistent fiducial distribution 不一致置信分布 | inconsistent formula 全假公式
-
incompatible equations:不相容方程
incompatibility 不相容性 | incompatible equations 不相容方程 | incomplete beta function 不完全函数
-
inconsistent equations:不相容方程
inconsistency 不一致性 | inconsistent equations 不相容方程 | inconsistent estimator 不相容估计量
-
Dimensionally inconsistent equations:尺寸不相容方程
Dimensionally homogenous equations, 尺寸均一方成 | Dimensionally inconsistent equations, 尺寸不相容方程 | Dimensional variables, 量纲变量
-
inconsistent estimator:不相容估计量
inconsistent equations 不相容方程 | inconsistent estimator 不相容估计量 | inconsistent formal system 不相容形式系统
-
inconsistent estimator:不一致估計量
不相容方程;矛盾方程 inconsistent equation | 不一致估计量 inconsistent estimator | 不一致极限 inconsistent limit
-
inconsistent equation:不相容方程;矛盾方程
不成立;不相容 inconsistent | 不相容方程;矛盾方程 inconsistent equation | 不一致估计量 inconsistent estimator
-
Dimensionally homogenous equations:尺寸均一方成
variables defined. 变量定义 | Dimensionally homogenous equations, 尺寸均一方成 | Dimensionally inconsistent equations, 尺寸不相容方程