- 更多网络例句与相同运算相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then, the sequence voltages of the slack bus is replaced, and finding the positive sequence power flow several times until convergence comes off. Compared with the three-phase Newton-Raphson method, the Jacobian matrix with the proposed algorithm is of much lower order. The computation of finding the negative sequence component from the coupling power is only division arithmetic.
本文算法中修正方程式的雅可比矩阵阶数同单相潮流算法相同,是传统三相潮流算法的1/3,而通过耦合功率求解负序分量的计算,仅仅是简单的除法运算,计算量远远小于高阶矩阵的处理,因而总体上,与传统方法相比,大大降低了计算量。
-
This article tries to find out the generality of Boolean logic behind all systems in order to help users and librarians build up the concept of critical thinking.
在各家查询介面的背后,其布林逻辑的运算观念实际上是相同的。真正了解的查询者并不多。
-
At the same time , we discuss the determinism and nondeterminism of formula-clock automata and the closure propertied under Boolean operation of the language which is accepted by formula-clock automata. We also prove the expressive equivalence between the deterministic formula-clock automata and the nondeterministic formula-clock automata. This means that every nondeterministic formula-clock automata can be transformed to a deterministic formula-clock automata which exactly accept the timed language identified by the fomer.We also extend timed words to infiniteness and define the formula-clock Buchi automata and the formula-clock Muller automata. At last, we show its application in formal verification and modeling of real-time system.
然后讨论了公式时钟自动机的确定性和非确定性,公式时钟自动机识别的语言类在并、交、补运算下的封闭性;并证明了确定的公式时钟自动机和非确定的公式时钟自动机表达能力的等价性,这意味这每一个非确定的公式时钟自动机都能转换为一个与之识别相同时间语言的确定的公式时钟自动机;我们将时间字扩展为无穷的,从而定义了公式时钟Buchi自动机与公式时钟Muller自动机;最后给出了用它进行实时系统的形式化验证方面及对实时系统建模的应用。
-
The differential input circuit is the same as that found on many modern operational amplifiers.
差分输入电路是相同的,在许多现代的运算放大器发现。
-
The method this paper discussed was based following theoretic analysis: Square and multiplication of large integer are two basic operations in modular exponential m_ary algorithm. The main operations of m_ary algorithm of point multiplication in elliptic curve encryption were doublings and point addition. The steps of m_ary algorithm in point multiplication was similar to modular exponential.
其基于以下理论分析:模幂m_ary算法的基本运算为大数乘法,其中包括大数平方算法和一般大数乘法;椭圆曲线加密算法中点乘的m_ary算法步骤与模幂的m_ary算法相同,后者的基本运算为倍乘和加法。
-
The logical operations require the operators of set algebra: equal to, greater than, and less than, and combinations thereof
逻辑运算需要代数运算者:相同的比较,和比较少的比较,和组合关於
-
The method includes steps: each point in sequence x with length L, i=0, 1, 2,apostrophe L-1 is served as a independent variable of k order polynomial; changing coefficient of polynomial to generate multiple sequence f with length L, where k is nonnegative integer; operation in polynomial is carried out in Galois Field GF, where Q=pm, p as a prime number, and m as nonnegative integer; assigning generated sequences to multiple sectors to set of create biased sequences for each sector; it is different in constant terms of polynomial, and identical to other coefficients of coefficients corresponding to sequence assigned to same sector; creating corresponding time - frequency pattern unit from biased sequences of the sector; repeating TFP unit with equal interval in frequency domain so as to obtain integrated TFP.
本发明涉及一种时频资源的分配方法,所述方法包括:把一个长度为L的序列{x,i=0,1,2,…L-1}中的每一点作为一个k次多项式的自变量,改变多项式的系数生成多个长度为L的序列{f},其中k是非负整数,多项式中的运算在伽罗华域GF中进行,其中Q=p m ,p是一个素数,m是非负整数;把生成的序列分配给多个小区,生成各小区的偏置序列集合,其中分配给同一个小区的序列所对应的生成多项式的常数项不同,其他项的系数都相同;由所述小区的偏置序列生成对应的时频图案单元,将时频图案单元经过频域等间隔重复,得到完整的时频图案。
-
The quality of approximation is as good as polygonal boundary reduction, and it can process the data online in a constant buffer.
算法具有多边形约简算法相同的优良的近似质量,并可在固定数据缓冲区空间内在线运算。
-
But, because mobility of raceway groove of Si CMOS parts of an apparatus is low, bring about parts of an apparatus cross guide the Si parts of an apparatus that falls under same size, so gain of its open loop also is less than the Si operation amplifier of identical structure and dimension.
但是,由于Si CMOS器件沟道迁移率低,导致器件的跨导低于相同尺寸下的Si器件,所以其开环增益也小于相同结构和尺寸的Si运算放大器。
-
The modular design of printNet system is divided into several application part, such as data processing tools, design tools, products, Business card printing tools, and solutions to technical tools, of which the highest is a design tool over the actions that it printLayout from page formatting and setting variables, but also can be used by an operator in a transform tool programming, so that the contents of the variables in a database in output for operations, now produetion of mostly to one-dimensional bar codes and encrypted bit or anti-false, the party is a method in the bar code by addition, subtraction, multiplication, Division, opinins Mo, and so after the results or the results of data, or the result is converted to the data that corresponds to a location in one of the ntehs detection accuracy is valid, just make a bit of the inverse operation, the operation that results in comparison with the original data, such as the same as the data is valid, such as different then the data is not valid, this scenario is the most simple and most primitive anti-counterfeit. PrintNet software to complex product environment " interpuntion and output the integration of integrated management " solution possible.
printNet系统的模块式设计分为几个应用部分,如数据处理工具、设计工具、产品制卡工具以及方案解决工具,其中技术含量最高的是对设计工具printLayout的操作,它除了设计页面格式和设置变量外,还可由操作员在转换工具中编程,以便对数据库中的变量内容在输出时进行运算操作,现在生产中应用的大多是给一维条码加校验位或是防伪加密,其方一法是将条码中的数据经过加、减、乘、除、取莫等运算后,将结果或将结果中的几位至于数据后,或将结果转换成对应符号放在数据中的某个位置,如须检测某一数据是否准确有效,只要把校验位上的数进行逆运算,把运算结果与原数据比较,如相同则数据有效,如不同则数据无效,这种方案是最简单最原始的防伪加密的方法。printNet软件系统使得在复杂产品环境下的&排版与输出一体管理&的集成解决方案成为可能。
- 更多网络解释与相同运算相关的网络解释 [注:此内容来源于网络,仅供参考]
-
addition:加法
4.加法(addition)交换律(commutative law)和结合律(associative law)在有理数加法运算中依然成立. 有理数乘法(multiplication)法则:乘方:几个相同的因数相乘的运算叫做乘方(power),乘方的结果叫做幂. (power)如果有n个a相乘,
-
associativity:顺序关联性
当运算元出现位置在两个具相同运算顺序的运算元中间时,这两个运算子的顺序关联性 (Associativity) 便决定了运算执行的顺序:
-
commutative law:交换律
4.加法(addition)交换律(commutative law)和结合律(associative law)在有理数加法运算中依然成立. 有理数乘法(multiplication)法则:乘方:几个相同的因数相乘的运算叫做乘方(power),乘方的结果叫做幂. (power)如果有n个a相乘,可以写为an,
-
galois field:伽罗瓦域
伽罗瓦域(Galois Field)预算是在RAID6在进行双位校验需要用到的数学原理. 他包括+,-,×, ÷四种运算,其中+,-操作和XOR运算相同,表示为?;而×表示为乘以基数,表示为⊙;同样,÷定义为,若A=C÷B,则C=A⊙B. Reed-Solomon编码,
-
idempotent semigroup:幂等半群
idempotent ring 幂等环 | idempotent semigroup 幂等半群 | identical operation 相同运算
-
identical operation:相同运算
idempotent semigroup 幂等半群 | identical operation 相同运算 | identical operator 恒等算子
-
identical operator:恒等算子
identical operation 相同运算 | identical operator 恒等算子 | identical permutation 恒等排列
-
negation:非
注意所有关系运算子的优先序都一样,同样地,次方、正、负及布林的非(negation)都有最高的优先序. 当式子中相邻两个运算子都具有相同优先序时,我们还要决定何者先运算,例如-A↑B到底是表示(-A)↑B或-(A↑B)﹖假设A=-1,B=2,
-
Operator Precedence:运算符优先级
加法运算符和减法运算符的优先级相同. 因此,以下语句运算符优先级(Operator precedence)是决定运算顺序的重要规则,但不能完全(也没必要完全)确定运算顺序. 例如:
-
precedence:优先权
多维阵列的最后一维代表元素* 不同的运算子(operators)出现时, 视其优先权(Precedence)决定运算顺序 * 相同优先权的运算子出现时, 视其结合性(Associativity)决定运算顺序a=a+d; /编译错误,因型态不符 算术(Arithmetic Operators)c=a*b;