- 更多网络例句与相关行列式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The common method, that all strong-correlation terms of the model are eliminated, can bring the loss in the engineering application, so the new method is proposed that the identified model reserves some correlation. The augmented matrix A is constructed by the outputΔW and the matrix S. The"determinating order based on ratio of determinant"is brought out to screen the strong-correlation terms in the structure identification. The latent root estimation is improved in screening the eigenvalues and eigenvectors. Thus the estimation precision is improved greatly.The consistence check of guidance instrument error coefficients of flight test and ground test is the purpose of flight experiment. The causes of inconsistency of the two models are analyzed. The hypothesis test of linear regression model based on F statistics is proposed to check the consistence.Finally, the instability of error coefficients is probably caused by the change of the flight environments, therefore, the relation between the error coefficients and flight environment is analyzed. The approach is presented to identify SINS guidance instrument error models and compensate the error in the segmented sections corresponding to the change of vertical acceleration of aircraft.
在结构辨识中,常用的方法由于将模型中的强相关项全部剔除而给工程应用带来损失,因此,本文提出了新的有益思想,即在保留一定相关性的基础上进行辨识:将输出向量ΔW与环境函数矩阵S构成增广矩阵A,然后采用"比定阶行列式"来剔除相关向量的方法,这样既可以尽可能多地保留了对落点影响大的强相关参数,又可以对落点影响小的强相关参数给予剔除;在参数估计中,改进了特征根估计中特征根和特征向量的筛选方法,提出"近零"准则,从而大大提高了参数估计的精度;再者,鉴于天地模型"一致性"检验是飞行试验和SINS制导工具误差系数分离的主要目的,因此,本文又深入分析了造成天地模型不一致的原因,提出了采用基于F统计的线性回归模型假设检验方法来进行捷联制导工具误差模型的天地"一致性"检验;最后,鉴于飞行环境剧烈变化可能会对惯性仪表误差系数稳定性带来一定的影响,因此本文深入地分析了SINS制导工具误差系数与外界环境的关系,提出了基于过载变化大小的分段辨识和分段实时补偿的算法。
-
Some basic properties of σ- LFSR over F4 are studied, such as nonlinearity, cycle structure distribution of state graph, the largest period and counting problem related. The conclusions are as follows:The coefficient ring of σ-LFSR is isomorphic to the matrix ring over F,. The cycle structure of σ- LFSR is consistent with that of the determinant of the corresponding polynomial matrix if and only if the feedback polynomial of - LFSR does not contain nontrivial factor over F2,. The counting formula of the number of σ- LFSR with inconsistent cycle structure is also showed in that part. The period of σ-LFSR with degree n is maximum if and only if the determinant of the corresponding polynomial matrix is the primitive polynomial with order 2n over F2,.
本文研究了有限域F_4上的σ-LFSR的一些基本性质,如非奇异性、状态图的圈结构的分布、最大圈的充要条件及相关的计数问题等,得到以下结论:σ-LFSR的系数环同构于F_2上的矩阵环;σ-LFSR的状态图的圈结构与对应的多项式矩阵的行列式的圈结构一致的充要条件为σ-LFSR的反馈多项式不含有非平凡的F_2上的因式,给出了圈结构不一致的σ-LFSR的计数公式; n次σ-LFSR周期达到最大,当且仅当对应多项式矩阵的行列式为F_2上的2n次本原多项式。
-
So, let's look at a related determinant of power: culture.
所以,让我们看看一个相关的行列式的权力:文化。
- 更多网络解释与相关行列式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
correlation curve:相关曲线
correlation coefficient 相关系数 | correlation curve 相关曲线 | correlation determinant 相关行列式
-
correlation determinant:相关行列式
correlation curve 相关曲线 | correlation determinant 相关行列式 | correlation function 相关函数
-
function:函数
常常对各种符号进行长期的比较研究,然后再选择他认为最好的、富有启示性的符号.他创设的符号还有 此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了"函数"(function)、"常量"(con
-
functional dependence:函数相关
functional constant 函数常数 | functional dependence 函数相关 | functional determinant 函数行列式
-
variate:变量
认为最好的、富有启示性的符号.他创设的符号还有 此外还有对数符号、函数符号、行列式符号等等.很多符号的普遍使用与他的提倡和影响密切相关.他还引入了"函数"(function)、"常量"(constant quantity)、变量"(variate)、"参变量"(pa