英语人>词典>汉英 : 直线测度 的英文翻译,例句
直线测度 的英文翻译、例句

直线测度

词组短语
lineal measure
更多网络例句与直线测度相关的网络例句 [注:此内容来源于网络,仅供参考]

Paul Erds once posed the following problem about real line R: is it true that, for every infinite set X, there is a closed set E with positive lebesgue measure such that E doesn't contain any subset similar to X (I.e., there is no subset of E, which is a linear homeomorphic image of X). In 1984, K. J. Falconer proved the following: for a decreasing sequence of positive numbers {xn} such that \%lim\%xn=0 and \%lim\%(xn+1)/=1, Erds problem has a partial positive answer.

叶盛 Paul Erds曾提出如下关于实直线R的问题:是否对R的每一个无限子集X,都存在一个具有正测度的闭子集E,使得E的任何子集都不相似于X(E的任何子集都不与X线性同胚)。1984年,Falconer证明了如下结论:对于一个满足limxn=0和lim(xn+1)/=1的单调递减的正实数列{x n},Erds问题有一个部分肯定的解答。

The contents of the abstract of the short Communication is:"The paper gives a complete differential partition to a Euclidean straight line with a fixed frame, and three axioms for the integral of infinitesimals indexed by real numbers; proves in standard mathematics there are positive infinitesimals outside of real number set; Gives cosmic, macro and micro counterexamples to two axioms in Jordan, Carathéodory, and Lebesgue measure theory; transforms Weierstrass limit into Huang limit, Cantor continuum into Huang continuum, and Newton-Leibniz formula into Huang formula."

这个短的发言的摘要的内容如下:"此文对一条确定了固定标架的欧几里德直线给出了完整的微分分拆,并对以实数为标号的无穷小的积分给出了三条公理;在标准数学中证明了在实数集合之外存在正的无穷小;对若当,卡拉特欧多里和勒贝格测度论中的两条公理给出了宇观的,宏观的和微观的反例;将外尔斯特拉斯极限改进为黄氏极限,将康托连续统改进为黄氏连续统,和将牛顿-莱布尼茨公式改进为黄氏公式。"

The contents of the abstract of the short Communication is:"The paper gives a complete differential partition to a Euclidean straight line with a fixed frame, and three axioms for the integral of infinitesimals indexed by real numbers; proves in standard mathematics there are positive infinitesimals outside of real number set; Gives cosmic, macro and micro counterexamples to two axioms in Jordan, Carathéodory, and Lebesgue measure theory; transforms Weierstrass limit into Huang limit, Cantor continuum into Huang continuum, and Newton-Leibniz formula into Huang formula."

这个短的发言的摘要的内容如下:&此文对一条确定了固定标架的欧几里德直线给出了完整的微分分拆,并对以实数为标号的无穷小的积分给出了三条公理;在标准数学中证明了在实数集合之外存在正的无穷小;对若当,卡拉特欧多里和勒贝格测度论中的两条公理给出了宇观的,宏观的和微观的反例;将外尔斯特拉斯极限改进为黄氏极限,将康托连续统改进为黄氏连续统,和将牛顿-莱布尼茨公式改进为黄氏公式。&