- 更多网络例句与甲亚氨相关的网络例句 [注:此内容来源于网络,仅供参考]
-
This technique pro-duced not only N-phosphonomethyliminodiacetic acid with high quality but also a great deal of chloromethane by the hydrolyzation of dimethyl phosphite and methylal .
提供了一种利用亚磷酸二甲酯残液(亚磷酸二甲酯生产过程中的副产)和甲缩醛(甘氨酸法生产草甘膦过程中的副产)为原料来合成双甘膦的方法,采用该工艺可以合成高含量的双甘膦,而且利用亚磷酸二甲酯残液和甲缩醛的充分水解可生成大量的氯甲烷,从而大大提高上述副产物的综合利用价值,具有很好的发展前景。
-
Results: The proportion of Gram-negative bacilli rose obviously, so did the opportunistic pathogen's and Yeasts detected rate. Most drug sensitive tests showed the drug-fast rate turned to be high. Escherichia coli, Salmonella and Citrobacter resistant and so on to fluoroquinolones was 57%~97%. These bacteria to imipenem showed excellent activity. Meticillin-resistant-staphylococcus resistant to ciprofloxacin, norfloxacin, clindamycin, tetracycline, erythromycin, cefazolin and ampicillin were 40.9%, 42.4%, 63.6%, 72.2%, 85.9%, 100.0% and 100.0%, respectively Streptococcus and Enterococcus resistant to major β-lactams-penicillin, aminoglycosides, macrolides, tetracyclines and sulfonamides were between 36.0% to 100.0%.
结果:革兰阴性杆菌比例显著升高,条件致病菌和酵母样真菌检出机会显著增多;药敏结果显示多数临床细菌对常用抗生素的耐药趋势在不断上升;大肠埃希菌、沙门菌和枸橼酸杆菌等革兰阴性杆菌对喹诺酮类药物的耐药率达57%~97%,亚胺培南则对阴性杆菌有较高的敏感覆盖率;耐甲氧西林葡萄球菌对环丙沙星、诺氟沙星、氯洁霉素、四环素、红霉素、头孢唑啉和氨苄西林的耐药率分别为40.9%、42.4%、63.6%、70.2%、85.9%、100.0%和100.0%;链球菌和肠球菌对多数β内酰胺类青霉素、氨基糖苷类、大环内酯类、四环素类以及磺胺类药物均呈高度耐药,耐药率在36%~100%。
-
The most commonly used drugs Bleomycin, mitomycin C, Adriamycin, 5 - 5-fluorouracil (5 - Fu), methotrexate, cyclohexyl - nitrosourea, imipramine hydrazone, Vindesine, etoposide (VP-16), chlorine and ammonia-platinum, a single chemotherapy drug remission rate in the 15% to 20% remission for 1 to 4 months.
最常用的药物有博来霉素、丝裂霉素C、阿霉素、5-氟尿嘧啶(5-Fu)、甲氨喋呤、环己亚硝脲、丙咪腙、长春花碱酰胺、鬼臼乙叉甙(VP-16),以及顺氯氨铂,单一药物化疗的缓解率在15%~20%,缓解期为1~4个月。
-
Chicken, Chicken Meal, Whole Ground Brown Rice, Whole Ground Barley, Chicken Liver, Pea Fiber, Chicken Fat (Preserved with Natural Mixed Tocopherols and Citric Acid), Brewers Dried Yeast, Natural Chicken Flavor, Dried Egg Product, Oil Blend (Soybean oil, Olive Oil, Salmon Oil, Evening Primrose Oil; Preserved with Natural Mixed Tocopherols and Citric Acid), Pumpkin, Apples, Sweet Potatoes, Carrots, Spinach, Blueberries, Dried Cranberries, Clams, Whole Ground Flaxseed, Calcium Carbonate, Salt, Potassium Chloride, Taurine, Green Lipped Mussels, Dried Chicory Root Extract, Yucca schidigera extract, Grape Seed Extract, Dried Kelp, L-Ascorbyl-2-Polyphosphate, Glucosamine Hydrochloride, Chondroitin Sulfate, Vitamin E Supplement, Ferrous Sulfate, DL-Methionine, Zinc Proteinate, Zinc Oxide, Manganese Proteinate, Niacin, Copper Proteinate, Folic Acid, Vitamin B12 Supplement, Copper Sulfate, Manganous Oxide, Vitamin A Supplement, Sodium Selenite, Thiamine Mononitrat Calcium Pantothenate, Riboflavin, Pyridoxine Hydrochloride, Biotin, Vitamin D3 Supplement, Menadione Sodium Bisulfite Complex, Calcium Iodate, Dried Lactobacillus acidophilus Fermentation Solubles, Dried Lactobacillus lactis Fermentation Solubles, Dried lactobacillus casei Fermentation Solubles, Rosemary Extract.
创造了一种全新的生产模式:低温焗炉焗制,低温焗烤不仅保存了食物中的营养和矿物质,而且降低了油份,让您的宠物食得更健康。更值得一提的是,通过数年投入大量人力、财力经过不断的尝试,终于于2009年年初研制出适合猫咪的最好食粮,无论从口感、成分配比,营养分析等综合因素,是您可以选择的最好的食材。鸡肉,鸡肉粉,全糙米,全地面大麦,鸡肝,豌豆纤维,鸡脂肪(天然保存溷合生育酚和柠檬酸),干酵母,天然鸡肉香精,干蛋产品,溷合油(豆油,橄榄油,三文鱼油,月见草油,天然溷合生育酚和柠檬酸保存),南瓜,苹果,红薯,胡萝卜,菠菜,蓝莓,小红莓干,蛤,全亚麻籽,碳酸钙,盐,氯化钾,牛磺酸,绿唇贻贝,干菊苣根提取物,丝兰提取物,葡萄籽提取物,干海带,L -抗坏血酸- 2 -聚,氨基葡萄糖盐酸盐,硫酸软骨素,维生素E补充,硫酸亚铁,DL -蛋氨酸,锌蛋白盐,氧化锌,锰蛋白盐,烟酸,铜蛋白盐,叶酸,维生素B12,硫酸铜,氧化锰,维生素A补充剂,亚硒酸钠,硫胺Mononitrat泛酸钙,核黄素,盐酸吡哆醇,生物素,维生素D3的补充,亚硫酸氢钠甲萘醌复合,碘酸钙,干嗜酸乳杆菌发酵米糠,干乳酸乳杆菌萃取物,干乳杆菌萃取物,迷迭香提取物。
-
The paint includes liquid A, which consists of acrylic resin, mixed solvent of xylene, acetone and isophorone, organic silicone solution, superfine silica powder, titanium dioxide powder, methyl-(N-beta-amino ethyl gamma-amino propyl)-dimethoxy siloxane solution, gamma-methyl acrylyloxy propyl tromethoxy siloxane solution and fluorocarbon modified siloxane; and liquid B, which consists of hexamethylene diisocyanate, polydiisocyanate, xylene, and methoxy propyl acetate. When the paint is used, two components are mixed together.
由丙烯酸树脂、二甲苯和丙酮及异佛尔酮混合溶剂、有机硅酮溶液、超细二氧化硅粉、钛白粉、甲基(N-β-氨乙基γ-氨丙基)二甲氧基硅烷溶液、γ-甲基丙烯酰氧基丙基三甲氧基硅烷溶液、氟碳改性硅氧烷溶液组成A液,由六亚甲基二异氰酸酯聚异氰酸酯、二甲苯和甲氧基乙酸丙酯混合溶液组成B液,使用时将两组分混合。
-
The detection rates of methicillin-resistant S. aureus and penicillin-nonsusceptible S. pneumoniae were 15.9% and 84.3%, respectively. The prevalence of ESBLs-producing strains in Klebsiella pneumoniae, Escherichia coli, Serratia spp and Enterobacter cloacae were 31.2%, 46.2%, 94.8% and 16.8% respectively. The resistance rates of Hemophilus influenzae and Hemophilus parainfluenzae to ampicilin were 40% and 36% respectively.
耐甲氧西林金黄色葡萄球菌检出率为15.9%;对青霉素不敏感的肺炎链球菌(包括PISP和PRSP)检出率为84.3%;肺炎克雷伯菌、大肠埃希菌、粘质沙雷菌和阴沟肠杆菌产ESBLs的检出率分别为31.2%、46.2%、94.8%和16.8%;流感嗜血杆菌和副流感嗜血杆菌对氨苄西林的耐药率为36%和40%;铜绿假单胞菌和鲍曼复合不动杆菌对亚胺培南的耐药率分别为10.7%和13.2%。
-
In Chapter 4, the radical cyclizations of methyleneamino and imino compounds containing C=N double bonds are studied.
论文的第四章,对含C=N双键的亚甲氨及亚氨的自由基环合反应进行了研究。
-
L-Phenylalanine was then obtained by alkylation of N- glycine ethyl ester with benzyl bromide in the presence of an asymmetric phase-transfer catalyst-N-benzyl-cinchonine chloride, followed by hydrolysis of the resulting product.
以甘氨酸乙酯盐酸盐和二苯甲酮为起始原料合成了N-二苯亚甲氨基乙酸乙酯,后者在手性相转移催化剂-N-苄基氯化辛可宁诱导下与烷基化试剂溴化苄发生不对称相转移催化烷基化反应,水解得到L-苯丙氨酸。
-
The effects and mechanism of GABAergic neurons, NOergic neurons, opioid peptide and cyclic adenosine monophosphate in the nucleus reticularis thalami on sleep-wakefulness cycle of rats and the effects and mechanism of the 5-HTergic nerve fibers project from the nucleus raphes dorsalis to RT on sleep-wakefulness cycle of rats were investigated with the methods of brain stereotaxic, nucleus spile, microinjection and polysomngraphy.1. The effects of GABAergic neurons in RT on sleep-wakefulness cycle of rats1.1 Microinjection of 3-mercaptopropionic acid (3-MP, a kind of glutamate decarboxylase inhibitor) into RT. On the day of microinjection, sleep only decreased a litter. On the second day, sleep marked decreased and wakefulness marked increased. On the third and fourth day, sleep and wakefulness stages resumed to normal.1.2 Microinjection of gamma-amino butyric acid (GABA 1.0μg) into RT enhanced sleep and reduced wakefulness compared with control; while microinjection of L-glutamate (L-Glu, 0.2μg) decreased sleep and increased wakefulness; microinjection of bicuculline (BIC, 1.0μg), a GABAA receptor antagonist, enhanced wakefulness and reduced sleep; microinjection of baclofen (BAC, 1.0μg), GABAB receptor agonist, had the same effects as GABA.2. The effects of NOergic neurons in RT on sleep-wakefulness cycle of rats2.1 Microinjection of L-arginine (L-Arg, 0.5μg) into RT decreased sleep compared with control, but there were on statistaical difference between L-Arg group and control; while microinjection of sodium nitroprusside (SNP, 0.2μg), a NO donor into RT, sleep marked decreased and wakefulness marked increased. Microinjection of nitric oxide synthase inhibitor, N-nitro-L-arginine (L-NNA, 2.0μg) into RT enhanced sleep and reduced wakefulness.2.2 After simultaneous microinjection of L-NNA (2.0μg) and SNP (0.2μg) into RT, SNP abolished the sleep-promoting effect of L-NNA compared with L-NNA group; after simultaneous microinjection of L-NNA (2.0μg) and L-Arg(0.5μg) into RT, we found that L-NNA could not blocked the wakefulness-promoting effect of L-Arg.3. The effects of opioid peptide in RT on sleep-wakefulness cycle of rats3.1 Microinjection of morphine sulfate (MOR, 1.0μg) into RT increased wakefulness and decreased sleep compared with control; while microinjection of naloxone hydrochloride (NAL, 1.0μg), the antagonist of opiate receptors, into RT, enhanced sleep and reduced wakefulness.3.2 After simultaneous microinjection of MOR (1.0μg) and NAL (1.0μg) into RT, the wakefulness-promoting effect of MOR and the sleep-promoting effect of NAL were not observed compared with control.4. The effects of cAMP in RT on sleep-wakefulness cycle of rats Microinjection of cAMP (1.0μg) into RT increased sleep and decreased wakefulness compared with control; microinjection of methylene blue (MB,1.0μg) into RT enhanced sleep and reduced wakefulness compared with control.5. The effects of the 5-HTergic nerve fibers project from DRN to RT on sleep-wakefulness cycle of rats5.1 When L-Glu (0.2μg) was microinjected into DRN and normal sodium (NS,1.0μg) was microinjected into bilateral RT. We found that sleep was decreased and wakefulness was increased compared with control; when L-Glu (0.2μg) was microinjected into DRN and methysergide (MS,1.0μg), a non-selective 5-HT antagonist, was microinjected into bilateral RT, We found that sleep was enhanced and wakefulness was reduced compared with L-Glu group.5.2 When p-chlorophenylalanine (PCPA, 10μg) was microinjected into DRN and NS (1.0μg) was microinjected into bilateral RT, We found that sleep was increased and wakefulness was decreased compared with control; microinjection of 5-hydroxytryptaphan (5-HTP, 1.0μg), which can convert to 5-HT by the enzyme tryptophane hydroxylase and enhance 5-HT into bilateral RT, could block the effect of microinjection of PCPA into DRN on sleep-wakefulness cycle.
本研究采用脑立体定位、核团插管、微量注射、多导睡眠描记等方法,研究丘脑网状核(nucleus reticularis thalami,RT)中γ-氨基丁酸(gamma-amino butyric acid ,GABA)能神经元、一氧化氮(nitrogen monoxidum,NO)能神经元、阿片肽类神经递质、环一磷酸腺苷(cyclic adenosine monophosphate,cAMP)及中缝背核(nucleus raphes dorsalis,DRN)至RT的5-羟色胺(5-hydroxytryptamine,5-HT)能神经纤维投射对大鼠睡眠-觉醒周期的影响及其作用机制。1 RT内GABA能神经元对大鼠睡眠-觉醒周期的影响1.1大鼠RT内微量注射GABA合成关键酶抑制剂3-巯基丙酸(3-MP,5μg),注射当天睡眠时间略有减少,第二日睡眠时间显著减少,觉醒时间明显增多,第三、四日睡眠和觉醒时间逐渐恢复至正常。1.2大鼠RT内微量注射GABA受体激动剂GABA( 1.0μg)后,与生理盐水组比较,睡眠时间增加,觉醒时间减少;而RT内微量注射L-谷氨酸(glutamic acid, L-Glu, 0.2μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAA受体阻断剂荷包牡丹碱(bicuculline,BIC,1.0μg)后,睡眠时间减少,觉醒时间增加;RT内微量注射GABAB受体激动剂氯苯氨丁酸(baclofen,BAC,1.0μg)后,产生了与GABA相似的促睡眠效果。2 RT内NO能神经元对大鼠睡眠-觉醒周期的影响2.1大鼠RT内微量注射NO的前体L-精氨酸(L-Arg,0.5μg)后,与生理盐水组对比,睡眠时间略有减少,但无显著性意义;而RT内微量注射NO的供体硝普钠(Sodium Nitroprusside,SNP,0.2μg)后可明显增加觉醒时间,缩短睡眠时间;微量注射一氧化氮合酶抑制剂L-硝基精氨酸(L-arginine,L-NNA,2.0μg)后,引起睡眠时间增多,觉醒时间减少。2.2大鼠RT内同时微量注射L-NNA(2.0μg)和SNP(0.2μg)后与L-NNA组比较发现SNP逆转了L-NNA的促睡眠作用;RT内同时微量注射L-NNA(2.0μg)和L-Arg(0.5μg)后,与L-NNA(2.0μg)组比较发现L-Arg可以增加觉醒而缩短睡眠,其促觉醒作用未能被NOS的抑制剂L-NNA所逆转。3 RT内阿片肽对大鼠睡眠-觉醒周期的影响3.1大鼠RT内微量注射硫酸吗啡(morphine sulfate,MOR,1.0μg)后与生理盐水组对比,睡眠时间减少而觉醒时间增加; RT内微量注射阿片肽受体拮抗剂盐酸纳洛酮(naloxone hydrochloride,NAL,1.0μg)后与生理盐水组比较,睡眠时间增加而觉醒时间减少。3.2大鼠RT内同时微量注射MOR(1.0μg)和NAL(1.0μg)后,与生理盐水组对比,原有的MOR促觉醒效果和NAL的促睡眠效果都没有表现。4 RT内环一磷酸腺苷信使对大鼠睡眠-觉醒周期的影响大鼠RT内微量注射cAMP(1.0μg)后与NS(1.0μg)组比较,睡眠时间增多而觉醒时间减少;RT内微量注射亚甲蓝(methylene blue,MB,1.0μg)后,与NS组比较,睡眠时间增多而觉醒时间减少。5中缝背核投射到丘脑网状核的5-羟色胺能神经纤维对大鼠睡眠-觉醒周期的影响5.1大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 0.2μg)比较,睡眠时间减少,觉醒时间增多;大鼠DRN内微量注射L-Glu(0.2μg),同时在双侧RT内微量注射二甲基麦角新碱(methysergide, MS, 1.0μg )后,与对照组(DRN注射L-Glu 0.2μg,双侧RT注射NS 1.0μg)比较,睡眠时间增多,觉醒时间减少。5.2大鼠DRN内微量注射对氯苯丙氨酸(p-chlorophenylalanine,PCPA,10μg),同时在双侧RT内微量注射NS (1.0μg)后,与对照组(DRN和双侧RT注射NS, 1.0μg)比较,睡眠时间增多,觉醒时间减少;大鼠DRN内微量注射PCPA(10μg),产生睡眠增多效应后,在双侧RT内微量注射5-羟色胺酸(5-hydroxytryptaphan , 5-HTP, 1.0μg )后,与对照组(DRN注射PCPA 10μg,双侧RT注射NS 1.0μg)比较,睡眠时间减少,觉醒时间增多。
- 更多网络解释与甲亚氨相关的网络解释 [注:此内容来源于网络,仅供参考]
-
ADM:阿霉素
乳腺癌是实体瘤中化疗对之较有效的,目前对乳腺癌较有效的药物有环磷酰胺(CTX)、氟尿嘧啶(5-FU)、甲氨蝶呤(MTX)、多柔比星(阿霉素)(ADM)、丝裂霉素(MMC)、长春新碱(VCR)、长春花碱(VLB),长春花碱酰胺(VDS)及环基亚硝脲(BCNU),
-
isophthalic acid:异酞酸
甲氨蝶呤 Methotrexate | 异酞酸 IsoPhthalic acid | 二亚乙基三胺 DETA
-
itaconic acid:衣康酸
物理化学特性 衣康酸(Itaconic acid) 学名为甲叉丁二酸,亚甲基丁二酸. 分子量:130.1; 分子式:C5H6O4; 衣康酸为白色晶体或粉末;熔点为165-168℃,比重为1.632,溶于水,乙醇等其它溶剂. 衣康酸具有活泼的化学性质物理化学特性 L-天冬氨酸(L-Aspartic acid) 学名为-氨基丁二酸,
-
methionic acid:亚甲基二磺酸,甲二磺酸
methiodal sodium 碘甲磺钠 | methionic acid 亚甲基二磺酸,甲二磺酸 | methionine deficiency 蛋氨酸缺乏
-
myoneural junction:肌神经接点
218.Myobactivirus 肌噬菌体(属) | 219.myoneural junction 肌神经接点 | 220.N-acetyldjenkolic acid N-乙酰黎豆氨酸,N-乙酰亚甲胱氨酸
-
BSA:体表面积
氨甲喋呤的剂量达到100mg/m2 体表面积(BSA)必须辅以亚叶酸钙治疗. 作为氨甲喋呤治疗的解毒剂,尚没有标准的关于亚叶酸钙治疗剂量和给药方式的方案,请参考下表中提供的建议剂量:氨甲喋呤(MTX)治疗的亚叶酸钙解救方案: