- 更多网络例句与用反计相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The calculation results show that the normal component of magnetic intensity is symmetrically distributed around the point of the acting force, where the normal component reach the maximum value; while the tangential component is antisymmetrically distributed around the point of the acting force, where the tangential component inverses its direction sharply.
结果表明,空气中扰动磁场的法向强度和切向强度分布特征明显不同,法向强度关于力作用点对称分布,并且在力作用点处达到最大,而切向强度关于力作用点反对称分布,并且在力作用点处有突变;地磁环境下,磁场对位移的影响可以忽略不计;扰动场强与外力成正比。
-
For vortex-liquid phase,the E-J relation could be described according to the Kim-Anderson model:U=U0(1-J/JC).While for vortex-glass phase,the electric field decays verydramatically with decreasing current density,so it is difficult to be observed with theinstrument has limited precision.In the intermediate current region,the E-Jrelations of the both phases could be fitted in terms of a phenomenological model:U=(U0/μ)[μ-1],it was concluded that the sign of μ-value changes fromnegative to positive when the temperature decreases lower than the glass-transitiontemperature Tg,meanwhile,the activation energy U enhances dramatically.Whilein the large current region,Zeldov's logarithmic model was suitable for fitthing theE-J curves of the both phase.Moreover,there was no abrupt change of U or thecharacteristic current density IC.However,the effective radius of vortex line variesremarkably around Tg.
对于涡旋液体相,小电流区的E-J关系可以用计及反跳的Kim-Anderson模型U=U0(1-J/JC)来描述,而对于涡旋玻璃相,小电流区的电场随电流密度减小而迅速衰减,以致很快脱离了实验测量精度的范围;在中等电流区,两相的E-J关系可以用共同的唯象过渡模型U=(U0/μ)[μ-1]来拟合,得到在玻璃转变温度Tg两侧μ值由正到负的变化,同时激活能U在Tg以下迅速升高;在较高电流区,两相的E-J关系可以很好的用Zeldov对数模型来描述,拟合结果表明U在Tg两侧的趋势没有明显变化,但是涡旋线的有效半径发生了显著变化。
- 更多网络解释与用反计相关的网络解释 [注:此内容来源于网络,仅供参考]
-
counterplot:计中之计/反计/对抗策略/将计就计/用反计
counterplea /反驳/ | counterplot /计中之计/反计/对抗策略/将计就计/用反计/ | counterplott /将计就计/用反计/
-
scleroscope:反跳硬度计
吹净用空气(冷厘法) scavening air | 反跳硬度计 scleroscope | 反跳硬度试验 scleroscope hardness test