英语人>词典>汉英 : 用代数方法 的英文翻译,例句
用代数方法 的英文翻译、例句

用代数方法

基本解释 (translations)
algebraically

更多网络例句与用代数方法相关的网络例句 [注:此内容来源于网络,仅供参考]

As advantage of this method, at the same time of diagonalization, one can know the algebraic structure in the Hamiltonian and get the eigenstates that are revealed to be an algebraic coherent state as well as some other possible information of the corresponding physical system.

这种方法的优点是,在用代数法将哈密顿量对角化的同时,不但得出了该系统哈密顿量的代数形式,并且可以得知对应的本征态与代数相干态的关系及对应的物理系统的其他物理信息。

Finally, we discuss other possible applications of algebraic methods to investigate other properties in molecules.

最后,我们讨论了用代数方法研究分子的其它特性。

We shall use algebraic methods to study graphs which are highly regular although this regularity is not expressed in terms of the automorphism group.

我们将用代数方法来研究高度正则的图,尽管这种正则性不是用自同构群来表达的。

In the given algorithm, a matrix is first transformed into its Hessenberg form by using row- and column-transformation and the characteristic polynomial can be then determined by means of the formulas and a recursive algorithm given in this paper.

例如,在确定系统矩阵的规范形,在用代数方法判别系统的稳定性,在控制器和观测器的设计等时,就通常需要计算矩阵的特征多项式。

In this paper we acquaint the reader first with the algebraic semantics which is corre-sponding to the Kripke's semantic having nested domaius. By an application of the completenesstheorem on relational semantics of the quantified normal modal systems with nested domains proved in Hughes and Cresswell's method to prove a completeness theorem on relational algebraic semantics of those system. Next for normal systems with semantics which admits arbi-trarily variable domains we use Henkin's method to prove a c...

本文首先讨论嵌套论域语义的相应代数语义并由Hughes和Cresswell在[5]中建立的关于具有嵌套论域的正规量词模态系统的关系语义完全性定理推出其相应的代数语义完全性定理:然后对于具有任意可变论域语义的正规系统,我们用Henkin方法给出其关于狭义Kripke语义的关系语义完全性定理,由此通过将关系语义转化为代数语义从而亦推得其代数语义完全性定理。

Chapter 1 briefs the relation between invariance and computer vision and summarizes the research and application of invariance in computer vision. Chapter 2 first derives the transformations of three camera models, then makes the correpondences between the models and three typical geometrical transformation groups by analysing the transformations respectively. The correspondences supply the theoretical basis for applying geometrical invariants to resolve the problems of computer vision. In Chapter 3, we describe the geometrical invariant theory and prove some geometrical invariants of coplanar points, lines or conics by algebraic method. In order to use the invariants of conic pairs to describe general 2D shapes, we discuss the perspectively invariant representation of planar curves using conies in detail. A system consisted of two TMS320C25 and based on moment invariants is introduced in Chapter 5. The system can recognize more than 30 different shapes of object model or more than 10 plane models with similar shape in real time.

第一章简述了不变性与计算机视觉的关系,以及计算机视觉中的不变性研究和应用概况;第二章推导了计算机视觉中常用三种投影模型的变换关系,通过对这三种变换关系的分析,分别建立了这三种投影模型和几何学中的三种变换群之间的一一对应关系,为几何不变性在计算机视觉中的应用提供了理论基础;在第三章中,我们介绍了几何不变性的理论,并且用代数方法证明了共面点、直线、二次曲线的几何不变量和射影不变量;为了把二次曲线的不变量用于一般二维形状描述,在第四章中我们详细地讨论了用二次曲线实现一般平面曲线的透视不变性表示的方法;第五章介绍了用两片TMS320C25构成的、基于不变矩形特征的运动目标实时识别系统。

The Weil Descent's algebraic method for DLP in the Jacobian of hyperelliptic curves which generalized by Galbraith is analyzed, and the problem of whether or not the Weil Descent'method can be used to attack the HCDLP with the form of y〓+xy=f defined over GF is discussed in detail.

研究了Galbraith提出的对超椭圆曲线的离散对数问题的WeilDescent代数攻击方法,对定义在GF上的形如y〓+xy=f的HCDLP能否用Weil Descent代数方法攻击作了详细讨论。

We first show that the multiple harmonic Ritz values have only one harmonic Ritz vector associated with them in algebra.

用代数方法证明对每个重调和Ritz值,只有一个线性无关的调和Ritz向量与之对应。

In Appendix A, we derive algebraically the expression of first laws of black hole thermodynamics.

在附录A中,用代数方法推导了黑洞热力学第一定律的的表达式。

90 And (2.9l )that the stress inside the inclusion Ω can be readily calculated algebraically for a given eigenstrain .

显然式2.90和式2.91中的内单元体Ω的压力可以通过给出的固有应变用代数方法计算出来。

更多网络解释与用代数方法相关的网络解释 [注:此内容来源于网络,仅供参考]

Analytic Geometry:解析几何学

解析几何学(analytic geometry)是借助坐标系,用代数方法研究几何对象之间的关系和性质的一门几何学分支,亦叫坐标几何. 由法国数学家笛卡儿和费马等人创建,其思想来源可上溯到公元前两千年.

graph:图

这个表达,很直接,但是非常重要,因为它把数学上两个非常根本的概念联系在一起:"图"(Graph)和"矩阵"(Matrix). 矩阵是代数学中最重要的概念,给了图一个矩阵表达,就建立了用代数方法研究图的途径. 数学家们几十年前开始就看到了这一点,

mechanize:机械化

"代数使数学机械化(mechanize),因而使思考和运算步骤变得简单,而无须花很大的脑力. 这有可能使数学创造变成一种几乎是一种自动化(automatic)的工作. 甚至逻辑上的原理和方法也可能用符号来表达,而整个体系则可用之于使一切推理过程机械化(mechanize)".

number system:数系

代数方面强调数系(number system)概念,用较严密的逻辑方法以证明数学上的定理. 前人依赖欧几里德几何来训练逻辑思维,在新数学课程里,主要是削减欧氏几何的非基本命题或非基本而繁复的命题而致力于更有趣的项目. 课程中加入集合论的概念逻辑,

prolongation:延拓

用延拓(Prolongation)方法分析耦合色散方程的隐对称结构,给出了它的无限维李代数表示. 并从理论上导出了该系统的线性谱一般形式,从而证明了它是严格可解的. (共4页)

renormalization group:重正化群

在统计物理和高能物理中,用到所谓重正化群(renormalization group)的方法,是非稳定系统的一个重要工具. 在微分方程或微分几何遇到奇异点或在研究渐近分析时,炸开(blowing up)分析是一个很重要的工具,而这种炸开的工具亦是代数几何中最有效的工具.