- 更多网络例句与渐近展开相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Further more,we compute the asymptotic expansion of sums involving generalized harmonic number by singularity analysis method.
进一步地,利用奇异性分析方法,求出涉及广义调和数的一些和式的渐近展开。
-
In this thesis, we mainly study the multi-scale asymptotic expansion and high accuracy algorithm for the periodic structure of composite materials.
本文主要研究复合材料周期结构的多尺度渐近展开与高精度算法,特别对多孔复合材料的多尺度渐进展开与高精度算法作了比较详细的研究。
-
Approximate methods have been developed, including the method of averaging, boundary layer method, methods of matched asymptotic expansion and multiple scales and so on.
近似求解方法已被发展,包括平均法,边界层法,匹配渐近展开和多尺度法等等。
-
To make our approach to be practical, we also discuss the asymptotic expansion of the operator in chapter 6 which is based on the non-abelian Stokes theorem.
但是由于格点上的算符是path-order变量的乘积,并且其构成非常复杂,按照正常的方式展开实际上是不可能的,为了使我们的算法实际可行,本文接着讨论了格点上算符的渐近展开问题,并且给出了基于non-abelStokes定理的方法,这种方法克服了以前各种办法的缺点,并且简单可行,适用于任意的Wilson算符。
-
This paper makes use synthetically of series expansion and asymptotic expansion of complex argument Fresnel integral and the connections of the two expansions are found and analyzed. The computing of Fresnel integral in whole complex plane is so solved perfectly.
本文综合运用了复宗量菲涅耳积分的小宗量级数展开和大宗量渐近展开,并且找到了大宗量展开与小宗量展开的衔接部,圆满地解决了菲涅耳积分在整个复平面内的计算机计算问题。
-
In this paper,the author discusses the multi-layer solution with two special limits in boundary layer of the singularly perturly boundary value problem and obtains uniformly valid zero order asymptotic expansion by using the matching asymptotic expanding method.
利用匹配渐近展开法,讨论了奇摄动边值问题中边界层内存在有两个特异极限的多层解,得出了奇摄动边值问题的一致有效的零次渐近展开
-
By adopting the asymptotic expansion method, the higher order partial differential equation was transformed into the system of ordinary differential equations.
采用渐近展开法,将该控制方程——高阶偏微分方程转化为常微分方程组,求解该方程组获得应力函数,进而得到功能梯度材料中裂纹尖端应力高阶渐近场的解析式。
-
At present no mathematical tables could be utilized and no detail characteristics could be known. This paper makes use synthetically of Taylor series expansion and asymptotic expansion of complex argument Fresnel integral and argument transition function and the connections of the two expansions are analysized and found.
本章综合运用了小宗量级数展开和大宗量渐近展开,并且找到了小宗量和大宗量的衔接部,圆满地解决了复宗量菲涅耳积分和复宗量过度函数在整个复平面上的计算机计算问题。
-
For the compressible materials, in order to satisfy the higher-order compatibility equation of the rate of deformation in the centered fan sector, which is a quite difficult problem unresolved in the previous studies, a particular term must be added to the expansions of the stress components in the regular logarithmic power series adopted by many researchers before. A higher-order near tip field with tangential velocity jump ahead of the crack tip is derived first, of which the dominant terms are the solution widely accepted.
对可压缩材料,本文首先采用非规则的对数幂级数渐近展开方法,克服了过去研究中存在的中心扇形区变形率协调方程的高次渐近式不能被满足的困难,并得到了一个切向速度在裂尖前方存在间断的高阶渐近解,该解的主项就是目前被广泛接受的关于可压缩材料的尖端场解。
-
The detailed comparisons between the higher—order near tip solution and the well—known modified Prandtl field are also given in this paper.For the compressible materials, in order to satisfy the higher-order compatibility equation of the rate of deformation in the centered fan sector, which is a quite difficult problem unresolved in the previous studies, a particular term must be added to the expansions of the stress components in the regular logarithmic power series adopted by many researchers before. A higher-order near tip field with tangential velocity jump ahead of the crack tip is derived first, of which the dominant terms are the solution widely accepted.
对可压缩材料,本文首先采用非规则的对数幂级数渐近展开方法,克服了过去研究中存在的中心扇形区变形率协调方程的高次渐近式不能被满足的困难,并得到了一个切向速度在裂尖前方存在间断的高阶渐近解,该解的主项就是目前被广泛接受的关于可压缩材料的尖端场解。
- 更多网络解释与渐近展开相关的网络解释 [注:此内容来源于网络,仅供参考]
-
asymptotic expansion:渐近展开
渐近分布 asymptotic distribution | 渐近展开 asymptotic expansion | 渐近场 asymptotic field
-
asymptotic expansion:渐近展开(式)
expansion 膨胀;扩展;展开;展开式 | asymptotic expansion 渐近展开(式) | thermal expansion 热膨胀
-
asymptotic expansion solution:渐近展开解法
asymptotic behaviour 渐近状态 | asymptotic expansion solution 渐近展开解法 | asymptotic orbit 渐近轨道
-
asymptotic expansion solution:渐近级数展开法
asymptotic estimation theory | 渐近估计理论 | asymptotic expansion solution | 渐近级数展开法 | asymptotic expansion | 渐近展开
-
Hankel asymptotic expansion:汉克尔渐近展开
汉克尔变换|Hankel transform | 汉克尔渐近展开|Hankel asymptotic expansion | 汉克尔算子|Hankel operator
-
Debye asymptotic expansion:德拜渐近展开
德拜渐近表示|asymptotic representation of Debye | 德拜渐近展开|Debye asymptotic expansion | 德布鲁因图|de Brujin graph
-
asymptotic expansion of solution:解的渐近展开
解的积分表示|integral representation of solution | 解的渐近展开|asymptotic expansion of solution | 解的破裂|blowing-up of solution
-
berg:(贝尔格)
当代数学名家L.贝尔格(Berg)、E.里克司廷斯(Riekstens)、G.阿斯科利(Ascoli)等人在各自的论文或专著中都介绍了徐利治的"渐近积分定理"和"展开定理",德国数学家R.黎德尔(Riedel)在作博士论文时还将推广徐利治的渐近积分定理作为选题.
-
asymptotic estimation theory:渐近估计理论
asymptotic error | 渐近误差 | asymptotic estimation theory | 渐近估计理论 | asymptotic expansion solution | 渐近级数展开法
-
integral representation of solution:解的积分表示
解冲突算法|collision resolution algorithm | 解的积分表示|integral representation of solution | 解的渐近展开|asymptotic expansion of solution