英语人>词典>汉英 : 涡旋 的英文翻译,例句
涡旋 的英文翻译、例句

涡旋

基本解释 (translations)
gurgitation  ·  volution

更多网络例句与涡旋相关的网络例句 [注:此内容来源于网络,仅供参考]

The transverse wave disturbance along tangential base flow of circular vortex is discussed By using numerical method we study this instability of baroclinic flow which is mesoscale inertia wave instability on the cylindrical coordinate The influence of stratification stability N 2 , Coriolis parameter f 0 , the vertical shear of tangential wind z of the ambinent atmosphere and the latent heat on the growth rate of instability is studied From the above analysis and calculation, we can learn that there are Eady mode and mesoscale mode of transverse wave instability in circular vortex as well Furthermore we also learn that distribution character of mesoscale mode disturbance field of transverse wave instability, anomalistic "cats eye" structure of lower level and the character of the slowly spreading disturbance converges at low level and the quickly spreading disturbance converges at high level

作者中文名:李红金;陆汉城;宋晓亮;李鲲摘要:讨论涡旋大气中,存在沿切向基流传播的横波型扰动,并采用数值方法讨论了柱坐标系下圆形涡旋系统斜压气流中这类扰动的不稳定,这是一类中尺度的重力惯性波的不稳定。研究了涡旋环境大气的层结稳定度参数N2、切向风垂直切变Vz、凝结潜热、涡旋特性及科里奥利参数f0对不稳定增长率的影响。圆形涡旋中同样存在横波不稳定的Eady模态和中尺度模态,得到了中尺度模态的扰动场分布特征:流场的不规则"猫眼"结构及慢速传播的扰动均集中在低层,而快速传播的扰动均集中在高层的扰动特征。

Therefore, the moist potential vorticity analysis associated with the mesoscale convective system was researched in the paper, so as to reveal the moist potential characteristics of mesoscale convective system in typhoon circulation. The results showed that, during the generation stage, convective instability characterized by MPV1 was a favorable condition for forming MCS, while the vorticity which was caused by the slantwise isentropic surface and the vertical shear of the horizontal wind characterized by MPV2 was an inspiring mechanism. The specific process was that, the atmosphere exhibited the feature of strong convective instability at the low level of convection areas and the southeast areas, which included plenty of erratic energy. The slantwise ascended the stream transfer the erratic energy to northwest, where the stratification stability was small. As decreased, the cyclonic vorticity increased. On the other hand, the vorticity caused by the slantwise isentropic surface and the vertical shear of the horizontal wind inspired the release of convective instability and as a result that the MCS formed. During the development stage, the cyclonic vorticity increased quickly with the persistent decreasing of . Meanwhile, the inclination of isentropic linewas bigger than the absolute momentum line at middle level, which exhibited the feature of conditional symmetric instability , then the conditional symmetric instability was forced to release by the vorticity resulted from the slantwise isentropic surface and the vertical shear of horizontal wind, and the MCS developed.

结果表明,在对流形成阶段,MPV1即对流不稳定为MCS的形成提供背景不稳定条件,由MPV2即湿等熵面的倾斜和水平风的垂直切变而引起的涡旋发展作为强迫机制:MCS形成的区域及东南区域中低层是强对流不稳定层,蕴含丰富的不稳定能量,倾斜上升运动把对流不稳定区具有强不稳定能量的暖湿空气向西北中层的中性层结区输送,由于的减小,气旋性涡度增强,有利于形成对流,另一方面,由于湿等熵面倾斜和低空急流加强而引起的涡旋发展作为一种强迫机制激发对流不稳定能量得到释放,从而形成对流;在对流系统地发展阶段,由于低层的对流不稳定性进一步减弱,进一步减小,气旋性涡度进一步增强,有利于MCS的增强,中层等θe 线的倾斜度比绝对动量M 等值线的倾斜度大,对应有条件对称不稳定区域,满足条件对称不稳定条件,在湿等熵面倾斜和台风低空急流作用下引起的涡旋发展强迫对称不稳定能量释放,从而使得对流得以维持和加强。

Study on geometry theory and engagement characteristics of scroll profiles Aiming as the limitations of scroll profiles in existence, the whole characteristics and local characteristics of plane curve instinct equation were studied. Analyzed the equidistant curve of envelope principle, normal equidistant curve creating method and envelope equidistant curve creating method were gained.

针对现有表征方式的局限性和不足之处,从微分几何角度出发,研究了平面曲线固有方程的局部特性和整体特性,分析了通用涡旋型线等距曲线和包络原理,得到了法向等距曲线生成及包络法等距曲线生成方法,推导了通用涡旋型线的坐标变换方法,得到了通用涡旋型线的平面啮合理论。

First, the typhoon flow field is decomposed into two parts: the maximum asymmetric vortex and irrotational environmental flow field. Then the maximum asymmetric vortex is also decomposed into two parts: the maximum symmetric vortex and β-gyres. Finally, typhoon Pearl(2006) is simulated by WRF model(weather research and forcasting model), and flow fields at various times at 500hPa...

首先,将台风的流场分解成最大的、不对称的涡旋流场和无旋流场;然后将不对称的涡旋流场分解成最大的对称涡旋和不对称的β涡旋对;最后,利用WRF(weather research and forcasting)模式(V2.1.2)模拟了200601号珍珠台风,并对各时次的500hPa风场用该方法进行分解,结果表明:该方法对台风的运动机理研究和实际的台风路径预测提供了有价值的信息。

Secondly, three kinds of mathematics model of optical vortex beams were introduced here. Then the propagation dynamics of optical vortex beams through the non-axis symmetry system is studied, this chapter includes the introduction of the symmetry vortex beam and the non- symmetry vortex beam, the deduction of the Collins diffract integral formula for the non-axis symmetry system, and the transformation of the vortex beam passing through the non-axis symmetry system has been described by using the numerical simulation. Then the general calculation for the orbit momentum of vortex beams, the matrix form for the orbit momentum of vortex beams, and the photon method to describe the orbit momentum of vortex beams are also introduced here. Finally, the interference about optical vortex beams was studied.

本文对涡旋光束进行了较为全面的介绍和研究,主要内容包括:(1)光学涡旋光束的基本理论,主要是介绍了单个光学涡旋光束在柱坐标中的一些表征,涡旋光束的奇异相位和光学涡旋的相位结构;(2)光学涡旋光束的三种数学模型;(3)光学涡旋光束在非轴对称光学系统中的传播动力学,其中介绍了对称涡旋光束与非对称涡旋光束,推导了非轴对称光学系统的 Collins 衍射积分公式,并利用计算机模拟图描述了对称涡旋光束经过非轴对称光学系统后涡旋形态的改变;(4)涡旋光束轨道角动量的一般计算,涡旋光束轨道角动量的矩阵形式,光子法描述涡旋的轨道角动量;(5)涡旋光束的干涉。

Using the seale separation method, the meso-scale structure of Mcc occ- ured near the Delta Area of the Pearl River is studied. It is shown that there is a meso-scale cyclonic circulation at 1000 hpa level and a meso-scale anticyclon at 200 hpa level associated with the Mcc. The axis of the Meso-scale cyclone center tilts northwestward with height, stretching up to 400 hpa level.

用滤波方法分析了一例发生在珠江口附近地区的Mcc的中尺度结构,结果表明,在对流层下部有中尺度的气旋性涡旋与Mcc相应,涡旋的中心轴线随高度向西北方向倾斜,在地面涡旋的上方200hPa层上,是一中尺度的反气旋性涡旋,中尺度的辐合中心和上升运动中心偏于Mcc的西部,扰动温度场也是非对称的,在对流层上部没有中尺度的暖高压。

In chapter 1,we have reviewed the complicated phase diagram of vortex matterand briefly presented the structure of vortex line,pinning mechanism of vortex line,anisotropy caused by layered structure,and the possible configurations of vortexmatter.Based on these introductions,the dynamic behaviors of vortex and theassociated variable dissipation mechanisms have been discussed.

本论文的第一章从高温超导体混合态中复杂的涡旋物质相图出发,综述了涡旋线的结构、涡旋线的钉扎机制、层状结构表现出的各向异性、以及与此关联的各种可能存在的涡旋物质形态,并在此基础上叙述了涡旋的动力学行为和由此决定的各种能量损耗的机制。

In order to determine further the profile of scrolls,the structural characteristics of superchargers with double-sided scrolls were analyzed and the principle of determining initial involute angle s was presented on the conditions of definite initial involute angle s,radius of base circle,and depth of scrolls.

在渐开线起始角、基圆半径和涡旋齿深度确定的条件下,为进一步确定涡旋齿的齿形,对双侧涡旋增压器的结构特征进行分析,提出始端渐开角的确定原则。通过吸气腔和排气腔的容积计算,结合回转角与渐开角的关系,给出涡旋齿始端和终端渐开角的计算方法。结果表明:该计算方法能较准确地确定涡旋盘的结构尺寸,从而可估算出整个压气机的尺寸是否满足汽车上有限的安装空间

Our investigation has shown that:ⅰ there was an interference effect between the incident and reflected matter waves as all the atoms in BECs were coherent;ⅱ considering the rotation of a vortex, the nonuniform velocity distribution along the surface would play an important role in the quantum reflection process. For example, they would change the characteristics of the interference fringes between the incident and reflected matter waves;ⅲ the reflected vortex became unstable for sufficiently low incident velocity or strong interaction. This sort of instability physically originated from dynamics excitations induced by the atomic interaction in the quantum reflection process.

我们的研究表明:ⅰ由于相干性质的存在,在涡旋与固体表面相互作用的过程中,被固体表面反射回去的部分与正在入射的部分在空间叠加后一定会产生清晰的干涉条纹;ⅱ由于各向异性的速度分布,涡旋的反射率也呈各向异性,因此反射回来的部分与入射部分形成的干涉条纹宽度以及疏密程度与入射速度以及速度各向异性的程度有关;ⅲ由于玻色凝聚体中原子间相互作用的存在,反射过程中凝聚体会产生激发,破坏涡旋的结构,使得反射后的涡旋不再是中心对称。

Evidence suggests that 1 under more stable stratification, the basic flow, if moving faster at low and high levels (particularly in the presence of jets there), allows a resulting meso-β unsteady wave to propagate eastward with respect to basic flow and even at greater velocity compared with it; 2 vertical windspeed shear of basic flow causes instabilities of the TWT perturbation; 3 considering the second derivative of basic-flow wind with respect to z (denoted by zz≠ 0 which is simply given as β* hereafter) the expression for the phase velocity of vortex Rossby wave is obtained, which is unidirectional in propagation with respect to basic flow; 4 VRoW has its physical origin from β*, i.e., from z-varying heterogeneities of y-direction averaged vorticity of the basic flow field; 5 VRoW phase velocity is associated with zonal wave number k, its energy is dispersive and the group velocity exists in the x direction; 6 when windspeed meets the condition of β*, TWT disturbance instability may be that of mixed VRoW and gravity wave; 7 if basic flow is subject to linear shear but does not meet the condition of β*, the TWT instability is that of inertia-gravity wave.

在大气层结比较稳定的情况下,如果基本气流在低层和高层较大(有可能存在低空急流和高空急流),此时产生的β中尺度不稳定扰动相对于基流向东传播,甚至于快速向东传播。基本气流在垂直方向上的风速切变对于中尺度横波型的扰动起着不稳定的作用。如果考虑基流的二次切变,可以得到涡旋Rossby波的相速度表达式,涡旋Rossby波相对于基本气流是单向传播的。涡旋Rossby波产生的物理根源是基本流场的风速二次切变,亦即基本流场y方向的平均涡度在空间z方向上的不均匀所致。涡旋Rossby波的相速度与纬向波数也有关,它的能量是频散的,其在纬向x方向也存在群速度。在基本流场的风速存在二次切变时,横波型不稳定可能是混合的涡旋Rossby重力波的不稳定;而在基本流场的风速仅仅存在线性切变,不存在二次切变时,横波型扰动的不稳定则是重力惯性波的不稳定。

更多网络解释与涡旋相关的网络解释 [注:此内容来源于网络,仅供参考]

circumpolar vortex:环极涡旋; 绕极涡旋

circum-Pacific belt;环太平洋地带;; | circumpolar vortex;环极涡旋; 绕极涡旋;; | circumstances beyond control;不可抗力;;

vortex filament:涡旋线

voorticity 涡旋强度 | vortex filament 涡旋线 | vortex lattice 涡旋点陈

vortex shedding:涡旋脱落

vortex breakdown 涡旋破碎 | vortex shedding 涡旋脱落 | pressure drop 压[力]降

volution:涡旋;旋圈;螺环

volute 集气环;螺旋形;蜗壳;螺旋形小室;涡旋形的 | volution 涡旋;旋圈;螺环 | Volvula] 卷螺属

vortex line:涡旋线

vortex lattice 涡旋点陈 | vortex line 涡旋线 | vortex motion 涡旋运动

vortex:涡旋

主要原因是通过超导体的磁场在超导体内是以磁涡旋(vortex)的形式出现,当超导体进入超导态时,磁场无法穿入,只能进入超导体的边缘,而当超导体在磁场状态下冷却时,因为磁场已进入超导体,所以在超导态时便以磁涡旋的方式存在於超导体中.

vortical:涡旋的

vortex stabilized flashlamp 涡旋稳定闪光灯 | vortical 涡旋的 | Voss's polariscope 伏斯偏振镜

vorticity:涡旋度

按一般用法,指具有涡旋度(Vorticity) 之流动. 此词常指流线密集度均集中在 「涡旋线」(Vortex filament) 上. 一半. 垂直於一小平面单元之涡旋度部份为单位面积上,当单元面积趋近於零时之环流极限. 固体旋转(Solid rotation)之涡旋度为角度向量之二倍.

vorticity equation:涡旋度方程

"vorticity","涡旋度" | "vorticity equation","涡旋度方程" | "vorticity path","涡旋度路线"

vortex-induced velocities:涡旋诱导速度

vortex train 涡旋列,涡串 | vortex-induced velocities 涡旋诱导速度 | vortices 涡旋