- 更多网络例句与波动方程相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Based on two-dimensional elastic wave equation and adopts the well logs as constraint condition, a new imaging method of crosswell seismic data-elastic wave equation inversion and imaging with the well logs constraint is given by using adjoint theory of distribution-parameter control system.
基于二维弹性波动方程,利用分布参数控制系统的伴随理论,采用测井资料作为约束条件,本文给出了一种井间地震资料速度成像的新方法——井间测井约束弹性波动方程反演成像。
-
This study uses the soil parameter reduction coefficients to model the seismic pile responses affected by liquefied soils. One dimensional wave equation analyses were conducted for the solutions. Based on the bore-hole data and nearby seismic record, the soil parameter reduction coefficients of liquefied layers can be obtained through a pre-analysis for liquefaction potential of the site. The reduction coefficients were used to reduce the soil modulus for liquefied soils, and the lumped mass analysis is performed to obtain the free-field response of the site. The ground deformations are superimposed onto the pile elements for discrete wave equation analysis, and the non-linear pile responses can be simulated through the modified Bouc-Wen model. Thus the deformations and failure mechanism of the pile are able to investigate.
中文摘要本研究之土质参数折减系数模式,系以一维波动方程模拟地盘液化状态下之桩基础动力反应,依据现场土层钻探资料与邻近测站之地震纪录,由土壤液化潜能评估法配合日本相关规范求得液化土层之土质参数折减系数,以此系数对土壤强度模数进行折减,并使用集中质块法求取自由场之地盘液化反应,再以此为前置解作用於桩基础之波动方程求解,桩身刚度以简化之Bouc-Wen模式模拟其非线性行为,以了解液化地盘内基桩之变形行为与破坏机制。
-
Spectral element methods for partial differencial equation is introduced in this study from viewpoint of the collocation approximation of Chebyshev polynomial. Wave Equation and its space discretization are deduced. Two time integral methods, central difference method and implicit Newmark method, are introduced, and their stability and applicability are also discussed in some details. The significance of absorbing boundary conditions in spectral element methods for Aeroacoustics is explained, and Clayton-Engquist-Majda absorbing boundary conditions is emphasized and introduced, then the discrete scheme of this boundary conditions is deduced and applied to spectral element methods for wave equation.
本文从Chebyshev多项式逼近理论出发,详细介绍了谱元方法求解偏微分方程的过程;推导了流体中的声波动方程并在空间上对其进行了谱元离散;详细讨论了两种时间积分方法──中心差分法和Newmark方法,分析了它们的稳定性条件,并从理论上对比了两种方法的优缺点和适用范围;将吸收边界条件推广应用于谱元方法求解气动声学问题中,重点介绍了Clayton-Engquist-Majda吸收边界条件的原理和公式,推导了该吸收边界条件的变分形式,并将其引入波动方程的离散形式中。
-
From 1920s up to Now, various techniques and methods for wave field decomposition, propagation and migration/imaging have been well developed, such as the Kirchhoff asymptotic method, frequency-wavenumber domain phase-shift and phase-shift-plus-interpolation methods, and the one-way wave equation based phase-screen and generalized screen methods, etc.
自上个世纪二十年代至今,波场分解、传播与偏移成像技术经历了将近一个世纪的发展,形成了多种不同的方法,如Kirchhoff波动方程高频近似解方法,频率-波数域的相移(phase-shift)方法和相移-内插方法,以及在混合域中基于单向波动方程的相位屏、广义屏方法等。
-
Then, the differential equations are solved by the Fourier expanding and Hankel integral transform method. Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media are obtained. Furthermore, a systematic study on Lamb's problems in transversely isotropic saturated half-space is performed. Integral solutions for surface radial, vertical and tangentical displacements are obtained both in the case of drained surface and in the case of undrained surface excited by vertical and tangentical harmonic resources respectively. Numerical results show the obvious difference between the model of isotropic saturated poroelastic media and that of transversely isotropic saturated poroelastic media.
其次,基于Biot波动理论,在圆柱坐标系下求解了横观各向同性饱和土的Biot波动方程:通过引入位移函数,在圆柱坐标系下将横观各向同性饱和土的Biot波动方程转化为两个解耦的6阶和2阶控制方程,然后根据方位角的Fourier展开和径向Hankel变换,求解波动方程,得到以土骨架位移和孔隙水压力为基本未知量的积分形式一般解,并用一般解给出了饱和土总应力分量的表达式;再以基本解为基础,系统地研究了横观各向同性饱和半空间体的Lamb问题,考虑表面排水或不排水两种情况后,首次得到横观各向同性饱和半空间体在表面竖向和水平谐振力作用的下径向、竖向和周向位移的解析解。
-
In the analysis, a nonlinear wave vibration equation of the thin cylindrical shell including damping and items due to geometric nonlinearities was established and then transformed by Galerkin's method. With different combinations of modes different nonlinear differential equations in modal coordinates were obtained. The Runge Kutta method was used to solve the equations numerically and some features of nonlinear wave vibration were discussed.
在研究过程中,首先,考虑阻尼并引入几何非线性项,建立薄壁圆柱壳的非线性波动方程,然后,采用Galerkin方法对波动方程进行转换,选取不同的模态组合,得到相应模态坐标下的非线性微分方程,最后用Runge-Kutta法进行数值计算并对圆柱壳的非线性波动振动特性进行了分析。
-
Based on the wave equations of electromagnetic field, a new time-domain numerical method-direct difference solution of vector wave equation is researched. Calculating formulas of electric field and magnetic field are also given.
对电磁场波动方程进行了分析,研究了一种基于电场波动方程的时域数值方法―矢量波动方程的直接差分解法,给出了电场和磁场的计算公式。
-
In this project, we study the theory of higher order differential equations in Banach spaces and related topics. We solve an open problem put forward by two American Mathematicians and two Italian Mathematicians concerning wave equations with generalized Weztzell boundary conditions, introduce an existence family of operators from a Banach space $Y$ to $X$ for the Cauchy problem for higher order differential equations in a Banach space $X$, establish a sufficient and necessary condition ensuring $ACP_n$ possesses an exponentially bounded existence family, as well as some basic results in a quite general setting about the existence and continuous dependence on initial data of the solutions of $ACP_n$ and $IACP_n$. We set up quite a few multiplicative and additive perturbation theorems for existence families governing a wide class of higher order differential equations, regularized cosine operator families, regularized semigroups, and solution operators of Volterra integral equations, obtain classical and strict solutions having optimal regularity for the inhomogeneous nonautonomous heat equations with generalized Wentzell boundary conditions, gain novel existence and uniqueness theorems,which extend essentially the existing results, for mild and classical solutions of nonlocal Cauchy problems for semilinear evolution equations, present a new theorem with regard to the boundary feedback stabilization of a hybrid system composed of a viscoelastic thin plate with one part of its edge clamped and the rest-free part attached to a visocelastic rigid body. Also we obtain many other research results.
在本研究中,我们对Banach空间中的高阶算子微分方程的理论以及相关理论进行了深入研究,解决了由美国和意大利的四位数学家联合提出的一个关于广义Wentzell边界条件下的波动方程适定性的公开问题,恰当地定义了Banach空间中的高阶算子微分方程Cauchy问题的算子存在族及唯一族,建立了齐次和非齐次高阶算子微分方程Cauchy问题适定性的判别定理,获得了关于高阶退化算子微分方程的算子存在族、正则余弦算子族、正则算子半群、Volterra积分方程解算子族的乘积扰动和混合扰动定理,得到了关于以依赖于时间的二阶微分算子为系数的一大类非自治热方程非齐次情形下的时变广义Wentzell动力边值问题的古典解、严格解的最大正则性结果,获得了半线性发展方程非局部Cauchy问题广义解和经典解存在唯一的判别条件,从实质上推广了现有的相关结果;得到了一部分边缘固定而另一部分附在一粘弹性刚体上的薄板构成的混合粘弹性系统的边界反馈稳定化的新稳定化定理,还建立了一系列其他研究结果。
-
The 1D wave equation inverse scattering problem includes many proce- dures such as time-depth conversion,Z transform,1D spectral fac- torization,reflection coefficient and transmission coefficient,et...
三维波动方程逆散射的关键环节可类比于一维波动方程反问题,一维波动方程逆散射中的时深转换、Z变换、一维谱分解和反射与透射系数等环节,在多维波动方程逆散射或速度横向变化介质逆散射的研究中,被替换为射线坐标系、单程波算子、基于Witt积的多维谱分解和反射与透射算子的平面波响应。
-
Finally, the wave equation of the electromagnetic field of this kind damper isderived from the Maxwells equation. The magnetic flux density at the boundary isassumed to be harmonic, so the analytical result of the wave equation is solved. When therotor rotates, eddy currents flowing inside the conducting material field are caused. Thetangential force acting on the rotor because of the action between eddy currents andmagnetic field is produced. The tangential force causes a retardation torque, which leadsto the increase of power and heating effects.
最后,应用Ahrens的电磁轴承简化模型,从Maxwell方程出发推导了应用于本文所述的被动式电磁阻尼器的波动方程,并用傅立叶级数把矩形磁场展开的谐变磁场作为磁场的边界条件,通过求解波动方程得到磁场的解析解,从而计算了阻尼器对转子的电磁力和由涡流引起的切向力产生的阻尼器附加功耗。
- 更多网络解释与波动方程相关的网络解释 [注:此内容来源于网络,仅供参考]
-
nonlinear wave equation of higher order:非线性高阶波动方程
高阶拟线性双曲方程.:Higher order quasilinear hyperbolic equations. | 非线性高阶波动方程:nonlinear wave equation of higher order | 高阶时频分布:Higher order time-frequency distribution
-
finite element wave equation migration:有限元波动方程偏移
finite element stress analysis 有限元应力分析 | finite element wave equation migration 有限元波动方程偏移 | finite element 有限元
-
irreducible wave equation:不可约波动方程
irreducible tensor operator 不可约张量算符 | irreducible wave equation 不可约波动方程 | irredundant disjunctive form 非冗长或形式
-
lee wave equation:背风波动方程
背风波 lee wave | 背风波动方程 lee wave equation | 背风波动理论 lee wave theory
-
Poisson's wave equation:泊松波动方程
泊松比测量仪 Poisson's ratio apparratus | 泊松波动方程 Poisson's wave equation | 戳 poke
-
Schr?dinger equation:薛定谔(波动)方程(一偏微分方程,描述基本粒子波动性)
scattering effect 散射作用 | Schr?dinger equation 薛定谔(波动)方程(一偏微分方程,描述基本粒子波动性) | scintillation 火花
-
Schr?dinger equation:薛定谔(波动)方程
scattering effect 散射作用 | Schr?dinger equation 薛定谔(波动)方程 | scintillation 火花
-
scalar wave equation:标量波动方程
标量波 scalar wave | 标量波动方程 scalar wave equation | 标量波动理论 scalar wave theory
-
scalar wave equation:标量波动方程,标量波方程
scalar wave 标量波 | scalar wave equation 标量波动方程,标量波方程 | scalar wave theory 标量波动理论
-
Schrodinger wave equation:薛定谔波动方程
Schrodinger equation 薛定谔方程 | Schrodinger wave equation 薛定谔波动方程 | Schwarzschild micro objective 施瓦兹希尔德(反射型)显微镜