- 更多网络例句与比例常数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
PART 1 UNIT 1 B Electrical and Electronic Engineering Basics A Electrical Networks ———————————— 3 Three-phase Circuits A The Operational Amplifier ——————————— 5 UNIT 2 B Transistors A Logical Variables and Flip-flop —————————— 8 UNIT 3 B Binary Number System A Power Semiconductor Devices —————————— 11 UNIT 4 B Power Electronic Converters A Types of DC Motors —————————————15 UNIT 5 B Closed-loop Control of DC Drivers A AC Machines ———————————————19 UNIT 6 B Induction Motor Drive A Electric Power System ————————————22 UNIT 7 B PART 2 UNIT 1 B Power System Automation Control Theory A The World of Control ————————————27 —————29 The Transfer Function and the Laplace Transformation UNIT 2 B A Stability and the Time Response ————————— 30 Steady State————————————————— 31 A The Root Locus ————————————— 32 ————— 33 UNIT 3 B The Frequency Response Methods: Nyquist Diagrams UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B State Equations 40 38 UNIT 6 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network Computer Control Technology A Computer Structure and Function 42 B Fundamentals of Computer and Networks 43 44 PART 3 UNIT 1 UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control UNIT 4 A Fundamentals of Single-chip Microcomputer 49 B Understanding DSP and Its Uses 1 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design Process Control A A Process Control System B 50 PART 4 UNIT 1 Fundamentals of Process Control 52 53 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture PART 5 UNIT 1 UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings PART 6 UNIT 1 UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles UNIT 1 A
电路 2 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
PART 1 Electrical and Electronic Engineering Basics UNIT 1 A Electrical Networks B Three-phase Circuits UNIT 2 A The Operational Amplifier ——————————— 5 B Transistors UNIT 3 A Logical Variables and Flip-flop —————————— 8 ———————————— 3 B Binary Number System UNIT 4 A Power Semiconductor Devices —————————— 11 B Power Electronic Converters UNIT 5 A Types of DC Motors —————————————15 B Closed-loop Control of DC Drivers UNIT 6 A AC Machines ———————————————19 B Induction Motor Drive UNIT 7 A Electric Power System ————————————22 B Power System Automation PART 2 Control Theory UNIT 1 A The World of Control ————————————27 B The Transfer Function and the Laplace Transformation UNIT 2 A B —————29 Stability and the Time Response ————————— 30 ————————————— 32 Steady State————————————————— 31 UNIT 3 A The Root Locus B The Frequency Response Methods: Nyquist Diagrams ————— 33 UNIT 4 A The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B UNIT 6 State Equations 40 38 A Controllability, Observability, and Stability B Optimum Control Systems UNIT 7 A Conventional and Intelligent Control B Artificial Neural Network PART 3 UNIT 1 Computer Control Technology A Computer Structure and Function B 42 43 44 Fundamentals of Computer and Networks UNIT 2 A Interfaces to External Signals and Devices B The Applications of Computers 46 UNIT 3 A PLC Overview B PACs for Industrial Control, the Future of Control 1 UNIT 4 A Fundamentals of Single-chip Microcomputer B Understanding DSP and Its Uses 49 UNIT 5 A A First Look at Embedded Systems B Embedded Systems Design PART 4 UNIT 1 Process Control A A Process Control System 50 B Fundamentals of Process Control 53 52 UNIT 2 A Sensors and Transmitters B Final Control Elements and Controllers UNIT 3 A P Controllers and PI Controllers B PID Controllers and Other Controllers UNIT 4 A Indicating Instruments B Control Panels PART 5 UNIT 1 Control Based on Network and Information A Automation Networking Application Areas B Evolution of Control System Architecture UNIT 2 A Fundamental Issues in Networked Control Systems B Stability of NCSs with Network-induced Delay UNIT 3 A Fundamentals of the Database System B Virtual Manufacturing—A Growing Trend in Automation UNIT 4 A Concepts of Computer Integrated Manufacturing B Enterprise Resources Planning and Beyond PART 6 UNIT 1 Synthetic Applications of Automatic Technology A Recent Advances and Future Trends in Electrical Machine Drivers B System Evolution in Intelligent Buildings UNIT 2 A Industrial Robot B A General Introduction to Pattern Recognition UNIT 3 A Renewable Energy B Electric Vehicles 2 UNIT 1 A
电路 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
PART 1 Electrical and Electronic Engineering Basics UNIT 1 A UNIT 2 A UNIT 3 A UNIT 4 A UNIT 5 A UNIT 6 A UNIT 7 A Electrical Networks ———————————— 3 B Three-phase Circuits The Operational Amplifier ——————————— 5 Logical Variables and Flip-flop —————————— 8 Power Semiconductor Devices —————————— 11 Types of DC Motors —————————————15 AC Machines ———————————————19 Electric Power System ————————————22 B Transistors B Binary Number System B Power Electronic Converters B Closed-loop Control of DC Drivers B Induction Motor Drive B Power System Automation PART 2 Control Theory UNIT 1 A B UNIT 2 A UNIT 3 A UNIT 4 A The World of Control ————————————27 Stability and the Time Response ————————— 30 The Root Locus ————————————— 32 The Transfer Function and the Laplace Transformation —————29 B Steady State————————————————— 31 B The Frequency Response Methods: Nyquist Diagrams ————— 33 The Frequency Response Methods: Bode Piots ————— 34 B Nonlinear Control System 37 UNIT 5 A Introduction to Modern Control Theory B B B PART 3 B B B State Equations Optimum Control Systems Artificial Neural Network Computer Control Technology 42 43 44 Fundamentals of Computer and Networks The Applications of Computers 46 40 38 UNIT 6 A Controllability, Observability, and Stability UNIT 7 A Conventional and Intelligent Control UNIT 1 A Computer Structure and Function UNIT 2 A Interfaces to External Signals and Devices UNIT 3 A PLC Overview PACs for Industrial Control, the Future of Control 1 UNIT 4 A Fundamentals of Single-chip Microcomputer 49 B B PART 4 B B B B PART 5 B B B B PART 6 Understanding DSP and Its Uses Embedded Systems Design Process Control 50 52 53 Fundamentals of Process Control UNIT 5 A A First Look at Embedded Systems UNIT 1 A A Process Control System UNIT 2 A Sensors and Transmitters Final Control Elements and Controllers PID Controllers and Other Controllers Control Panels Control Based on Network and Information Evolution of Control System Architecture Stability of NCSs with Network-induced Delay Virtual Manufacturing—A Growing Trend in Automation Enterprise Resources Planning and Beyond Synthetic Applications of Automatic Technology UNIT 3 A P Controllers and PI Controllers UNIT 4 A Indicating Instruments UNIT 1 A Automation Networking Application Areas UNIT 2 A Fundamental Issues in Networked Control Systems UNIT 3 A Fundamentals of the Database System UNIT 4 A Concepts of Computer Integrated Manufacturing UNIT 1 A Recent Advances and Future Trends in Electrical Machine Drivers B B B System Evolution in Intelligent Buildings A General Introduction to Pattern Recognition Electric Vehicles UNIT 2 A Industrial Robot UNIT 3 A Renewable Energy 2 UNIT 1 A
电路 电路或电网络由以某种方式连接的电阻器,电感器和电容器等元件组成。如果网络不包含能源,如电池或发电机,那么就被称作无源网络。换句话说,如果存在一个或多个能源,那么组合的结果为有源网络。在研究电网络的特性时,我们感兴趣的是确定电路中的电压和电流。因为网络由无源电路元件组成,所以必须首先定义这些元件的电特性。就电阻来说,电压-电流的关系由欧姆定律给出,欧姆定律指出:电阻两端的电压等于电阻上流过的电流乘以电阻值。在数学上表达为: u=iR (1-1A-1)式中 u=电压,伏特;i =电流,安培;R =电阻,欧姆。纯电感电压由法拉第定律定义,法拉第定律指出:电感两端的电压正比于流过电感的电流随时间的变化率。因此可得到:U=Ldi/dt 式中 di/dt =电流变化率,安培/秒; L =感应系数,享利。电容两端建立的电压正比于电容两极板上积累的电荷 q 。因为电荷的积累可表示为电荷增量 dq 的和或积分,因此得到的等式为 u=,式中电容量 C 是与电压和电荷相关的比例常数。由定义可知,电流等于电荷随时间的变化率,可表示为 i = dq/dt。因此电荷增量 dq 等于电流乘以相应的时间增量,或 dq = i dt,那么等式(1-1A-3)可写为式中 C =电容量,法拉。
-
With the analysis of the bond structure of the film as deposited and annealed, we can infer that the increased content of cage structure comprised of Si-O-Si bond with bigger bond angle may be the reason of decreased dielectric constant.
薄膜经过400℃热处理后,其介电常数由3.85降低到2.85,对其FTIR谱的分析指出,薄膜中鼠笼式结构比例的增加可能是薄膜介电常数降低的主要原因。
-
R2 Newton estimated this constant of proportionality, called the gravitational constant G, also referred to as the 'big G', from the gravitational acceleration of the falling apple and an approximate guess for the average density of the Earth.
牛顿根据下落中苹果的重力加速度和他对地球密度的近似猜测估算了这个称为"万有引力常数"的比例常数G。
-
Where the absorbance A is proportional to the concentration (c, in mol/L) of the solute, the length of the path the light travels through the sample, and the constant of proportionality,ε, called molar absorptivity coefficient (L mol-1 cm-1) or molar extinction coefficient
那里的吸收度A正比于溶质的浓度,l是通过样品的光路的长度,而比例常数ε叫做莫耳吸收系数(L mol-1 cm-1)或者莫耳消光系数。
-
Proportionality constant is the moment of inertia.
作用在刚体上的力矩与角加速度成正比,比例常数就是刚体的转动惯量。
-
The proportionality constant, H, is known as the Hubble constant and quantifies how fast space is stretching—not just around us but around any observer in the universe .
其中的比例常数H,就是所谓的哈伯常数,它可以把空间向外延伸的快慢予以量化,不只针对我们周遭,也适用于宇宙中所有观测者的周围。
-
Proportionality constant, usually called the Darcy's law permeability of the bed
-比例常数,通常叫达西方程参数
-
Hypercube has many advantages, such as smaller diameter, simple routing algorithm, many parallel paths between any two nodes, and fault-tolerance, on the other hand that the Hypercube nodal degree increased logarithmetically to the number of nodes has limited network population. So we propose a constant nodal degree hierarchical topology to remedy the weakness of Hypercube and take advantages of Hypercube most. Given the definition of FCCN we analyse the basic properties including nodal degree , number of links , extensibility and diameter (maximum network communication delay). Also we proposed a simple and self-routing algorithm applied in FCCN. Although the self-routing algorithm is not optimal, but at more than 82% case it can get the shortest path, and the percent is larger and larger increased with network levels. By the self-routing algorithm the internodal distance is calculated to evaluate the network communication delay more clearly. The average internal distance is in order of the cubic root of the network population that is almost same as logarithmetically relation in a few thousands. FCCN is a highly scalable network due to its recursive construction.
首先在比较了基本互连网络的基础上,看到超立体网络的杰出性能,包括网络直径小、寻路算法简单且为自寻路算法、容错能力好等等,但是由于其节点度随网络的规模的增加而按对数关系增长,使得超立体网络的应用规模受到极大限制,所以为了能最大限度利用超立体网络的优点的同时弥补其节点度方面的不足,作者提出了节点度等于常数4的FCCN网络结构,来最多地利用立方体网络的优点;然后在对FCCN网络进行严格的定义后,分析了网络的节点度、链路数、延伸特性、网络的直径(决定网络的最大通讯延迟)等,并提出了适于FCCN网络的简单的自寻路算法,计算自寻路算法可得到最短路径的比例,看到在多于82%以上的情况自寻路算法都是最优的,而且比例随网络层数的增加而增加;应用所提出的自寻路算法计算了可以更加准确反映网络通讯延迟的参数—网络平均节点距离,计算得到此参数与网络大小的立方根成正比,此比例关系在网络的规模在几千节点以内与对数关系的网络几乎一样;FCCN网络是一高度可扩展结构,这是因为FCCN的递归构成方式,使得网络在增加节点时其原有的拓扑结构可以保持不变,不需对网络进行重新设计,为网络的实用扩展提供了条件;理论分析得出FCCN网络是一种高度可扩展高性能网络的结论。
- 更多网络解释与比例常数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
constant of proportionality:比例常数
constant multiplier 常数乘子 | constant of proportionality 比例常数 | constant percentage decline curve 定率递减曲线
-
constant, Planck's:浦郎克常数
粒子蜕变常数 constant, particle disintegration | 浦郎克常数 constant, Planck's | 比例常数 constant, proportionality
-
proportional component:比例环节
proportional compasses 比例两脚规 | proportional component 比例环节 | proportional constant 比例常数
-
proportionality constant:比例常数
由于爱因斯坦的公式不能完全说明问题,咯任兹(Lorentz)按照比例常数(Proportionality constant)将其修改为转换的爱因斯坦-咯任兹公式(Einstein-Lorentz Transformation).
-
proportionality constant:比例常数,比例常量
property 性质 | proportionality constant 比例常数,比例常量 | protactinium 镤
-
proportionality constant:比例常数、比例系数
summation n. 相加、累加、求和 | proportionality constant 比例常数、比例系数 | voltage source 电压源
-
piezoresistive proportionality constant:压抗比例常数
piezometric tube 测压管 | piezoresistive proportionality constant 压抗比例常数 | piezoresistive strain gage 压抗应变计
-
constant, proportionality:比例常数
浦郎克常数 constant, Planck's | 比例常数 constant, proportionality | 生成常数 constant, prouction
-
proportionality factor:比例因数
proportionality constant 比例常数 | proportionality factor 比例因数 | proportioner 比例调节器,输送量调装置
-
constant of aberration:光行差常数
constant of a measuring istrument 测量仪表的常数 | constant of aberration 光行差常数 | constant of proportionality 比例常数