正规子群
- 更多网络例句与正规子群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Group, Subgoup, Permutation Group, Cyclic Group, Commutative Group, Normal Subgroup, Factor Group, Isomorphism, Ring, Ideal, Field, Polynomial Ring, Factor Ring.
课程内容:群,子群,置换群,循环群,交换群,正规子群,商群,群之同构,环,理想,体,多项式环,商环等。
-
Let F=LF be a s-closed local formation such that every minimal non-F-groups is solvable. It is proved that 1 If every cyclic subgroup of of order 4 and every minimal subgroup of G are contained in, then G is a F-group. 2 If there exists a normal subgroup N of G such that G/N∈F and every cyclic subgroup of N of order 4 is weakly c-normal in G and every element of N of prime order is contained in Z(superscript f subscript ∞), then G is a F-group.
设F=LF是一个子群闭的局部群系,满足每个极小非F-群是可解群,证明了:1如果G的任意极小子群和任意4阶循环子群都含于Z中,那么G是F-群;2如果存在G的正规子群,使得G/N∈F,且N的任一4阶循环子群在G中弱c-正规,N的任一素数阶元含于Z中,那么G是F-群。
-
Subgroup, Factor Group, Isomorphism, Ring, Ideal, Field, Polynomial Ring, Factor
课程内容:群,子群,置换群,循环群,交换群,正规子群,商群,群之同构,环,理想,体,多项式环,商环等。
-
In this paper, some more properties of the existence and conjugacy of complements of a normal subgroup K of a finite group G are studied.
研讨了关于有限群G的一个正规子群K的补子群之存在性与共轭性的更多一些的结果。
-
This article proves that in the homomorphism of G onto ■,the inverse image of a maximal normal subgroup in ■ is also a maximal normal subgroup in G.
本文得到了在同态满射下,极大正规子群的逆象也是极大正规子群,并给出了极大正规子群的象也是极大正规子群的一些等价条件。
-
For a Hall π-subgroup in π-separable group and a given π-Fong character, we show that there always exists a normal subgroup, such that some irreducible constituent of this π-Fong character which restricts on the join of these two subgroups is a π-Fong character associated to this normal subgroup.
对于π-可分群的一个Hall π-子群和一个给定的π-Fong特征标,我们证明了总存在一个正规子群使得这个π-Fong特征标在这两个子群的交上的限制的某个不可约成分是联系这个正规子群的一个π-Fong特征标。
-
Subgroup H of G is said to be π-quasinormally embedded in G, if for each prime divisor p of the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some π-quasinormal subgroup of G.
bstract 设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于{H}的每个素因子p, H的Sylow p-子群也是G的某个π-拟正规子群的Sylow p-子群。
-
A subgroup H of G is said to be π-quasinormally embedded in G, if for each prime divisor p of the order of H, a Sylow p-subgroup of H is also a Sylow p-subgroup of some π-quasinormal subgroup of G.
设G是有限群,称G的子群H在G中π-拟正规嵌入,如果对于{H}的每个素因子p, H的Sylow p-子群也是G的某个π-拟正规子群的Sylow p-子群。
-
Starting from the definition of almost normal subgroup , the author gives some interesting results about almost normal subgroups and the sufficient conditions for a finite group to be solvable.
利用几乎正规的定义对有限群G作了一些研究,得到了几乎正规子群的一些性质,并给出了有限群为可解群的几个充分条件。
-
We know that the concept of c-normal subgroup is related to the concept of normal subgroup.
我们知道c-正规子群的概念是与子群的正规性有关的。
- 更多网络解释与正规子群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
normal division algebra:正规可除代数
常态分布;(分配) normal distribution | 正规可除代数 normal division algebra | 正规子群;不变子群 normal divisor
-
invariant subgroup:不变子群,正规子群
invariant strangeness 不变奇异性 | invariant subgroup 不变子群,正规子群 | invariant subspace 不变子空间
-
invariant subgroup:不变子群,正规子群=>不変部分群
invariant structure 不変構造 | invariant subgroup 不变子群,正规子群=>不変部分群 | invariant subspace 不变子空间=>不変部分空間
-
normal subgroup, invariant subgroup:正规子群
正规锥|normal cone | 正规子群|normal subgroup, invariant subgroup | 正规族|normal family
-
normal cone:正规锥
正规性准则|criterion of normality | 正规锥|normal cone | 正规子群|normal subgroup, invariant subgroup
-
normal series:正规群列
Normal Endomorphism 正规的自同态 | Normal series 正规群列 | Normal subgroup 正规子群
-
simple group:单群
这样就有一个很自然的问题,有哪些有限的单群(simple group).单群除了它自己和单位元(identity)之外,没有其他的非平凡的正规子群(normalsubgroup). 数学上称其为简单群,其实一点也不简单. 所谓椭圆曲线,就是把这个曲线看成复平面内亏格(genus)等于1的复曲线.
-
weakly normal subgroup:弱正规子群
weakly mixing 弱混合的 | weakly normal subgroup 弱正规子群 | weakly ordered field 弱有序域
-
self-conjugate subgroup:正规子群;不变子群;自共轭子群
自共轭二次曲面 self-conjugate quadric | 正规子群;不变子群;自共轭子群 self-conjugate subgroup | 自配极四面形;自共轭四面形 self-conjugate tetrahedron
-
self-conjugate subgroup:正规子群
self-conjugate quadric ==> 自共轭二次曲面 | self-conjugate subgroup ==> 正规子群 | self-conjugate tetrahedron ==> 自配极四面形