- 更多网络例句与正定二次型相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Then using Positive definite quadratic theory to prove a sufficient condition of Multivariate function's extreme value problem and show some examples about it.
而后利用正定二次型理论,证明了多元函数条件极值的一个充分条件,并给出了其应用的例子。
-
At last the consistently symmetrical and positive definite properties between the energy matrices and the elastic matrices are clarified by using the theory of positive definite quadratic form of matrices.
最后,运用矩阵的正定二次型理论阐述了"能量矩阵与弹性矩阵"之间一致的对称性和正定性。
-
The physical meaning of the dynamical equilibrium relationships, velocity space-time distribution and energy propagation involved in the energy matrices can be described by the positive definite quadratic form of the energy matrices.
能量矩阵蕴含的动态力的平衡关系、速度的时间_空间分布和能量的传播及变化的物理意义,能够从能量矩阵的正定二次型特性表述出来。
-
Based on the relationship between matrix and symmetric matrix global exponential stability of the discrete-time neural networks model and the result of exponential convergence rate were obtained by using the characteristics of eigenvalues of a positive definite matrix and introducing a proper factor.
针对带有边界约束的凸二次规划问题,利用离散神经网络模型的建模原理,构造了一个神经网络模型。利用矩阵与对称矩阵的关系和正定矩阵特征值的性质,通过引入一个适当的因子,得到了该离散型神经网络模型是全局指数稳定性和指数收敛率的结果。同时分析了该结果的优越性和存在的不足,提出了解决的3种方法,最后给出了实例说明本方法取得结果的实用性
-
If A is a symmetric positive definite matrix, then the quadratic form x~ TAx can be written as a sum of squares. Equivalently, A is a sum of rank one matrices VV~T.
若A是对称正定矩阵,则二次型x~ TAx 能写成平方项的和,即A是秩为1的矩阵VV~T的和。
-
A prerequisite for positive or negative quadratic form was presented and it was proved by use of definition.
本文给出了二次型正定的1个必要条件,并对二次型正定、负定的必要条件给出了用定义证明的方法。
-
Firstly, the existence of Lyapunov function with the quadratic form for linear singular systems is discussed.
然后指出对X的任何正定二次型V,它沿线性广义系统的导数V都不会是X的负定函数。
-
Then using the Zhengding quadratic form theory, had proven a function of many variables condition extreme value's sufficient condition, and has given its application example.
而后利用正定二次型理论,证明了多元函数条件极值的一个充分条件,并给出了其应用的例子。
- 更多网络解释与正定二次型相关的网络解释 [注:此内容来源于网络,仅供参考]
-
proper orthogonal matrix:正常正交矩阵
正常有效解|proper efficient solution | 正常正交矩阵|proper orthogonal matrix | 正定二次型|positive definite quadratic form
-
positive definite quadratic form:正定二次型
positive definite operator 正定算子 | positive definite quadratic form 正定二次型 | positive direction 正方向
-
positive definite quatratic form:正定二次型
positive definite matrix 正定矩阵 | positive definite quatratic form 正定二次型 | positive semidefinite matrix 半正定矩阵
-
positive definite matrix:正定矩阵
partitioned matrix 分块矩阵 | positive definite matrix 正定矩阵 | positive definite quatratic form 正定二次型
-
positive semidefinite quadratic form:半正定二次型
positive semidefinite matrix 半正定矩阵 | positive semidefinite quadratic form 半正定二次型 | quatratic form 二次型
-
positive semidefinite matrix:半正定矩阵
positive definite quatratic form 正定二次型 | positive semidefinite matrix 半正定矩阵 | positive semidefinite quadratic form 半正定二次型
-
positive definite second variation:正定第二变分
正定二次型 positive definite quadratic form | 正定第二变分 positive definite second variation | 正定变换 positive definite transformation