- 更多网络例句与概率分布相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The distributed pattern shows different between the probability distribution of water depth of rain gauge and that of soil moisture in horizontal section of different depth.
在毛乌素沙地,喷灌前后土壤含水率等值线垂直分布均具有显著的垂直分层特征;在喷灌结束24h后,喷灌前土壤含水率的垂直分布与喷灌后土壤含水率的垂直分布间地相关性较弱;灌水前土壤初始含水率的概率分布形态均表现为较典型的左偏态分布,灌后土壤含水率分布形态表现为左偏态、右偏形态或正态分布;雨量筒水深概率分布与土壤不同深度剖面层水平方向的含水率概率分布在形态特征上表现出一定程度的差异,雨量筒水深分布与水平层土壤含水率分布、灌后相邻深度层土壤含水率分布、之间的相关程度较高,其相关性随着剖面深度和层间距的增加而降低。
-
In the Mu Us desert, either vertical distributions of soil moisture isogram before irrigation or vertical distributions of soil moisture isogram after irrigation shows obviously vertical-layered character. When the irrigation is finished 24 hours later, there is little correlation between vertical distributions of soil moisture isogram before irrigation and vertical distributions of soil moisture isogram after irrigation. All of probability distribution of soil water content before irrigation are left-skewed distribution, but some of probability distribution of soil water content after irrigation is left-skewed distribution, some is right-skewed distribution or normal distribution. The distributed pattern shows different between the probability distribution of water depth of rain gauge and that of soil moisture in horizontal section of different depth. There is close correlation between the distribution of water depth of rain gauge and that of soil moisture in horizontal section, but the correlation debases as the horizontal section turns deeper. Also after irrigation close correlation occurs between the distribution of soil moisture of layers bordering upon each other, but which reduces with space of different layers being larger.
在毛乌素沙地,喷灌前后土壤含水率等值线垂直分布均具有显著的垂直分层特征;在喷灌结束24h后,喷灌前土壤含水率的垂直分布与喷灌后土壤含水率的垂直分布间地相关性较弱;灌水前土壤初始含水率的概率分布形态均表现为较典型的左偏态分布,灌后土壤含水率分布形态表现为左偏态、右偏形态或正态分布;雨量筒水深概率分布与土壤不同深度剖面层水平方向的含水率概率分布在形态特征上表现出一定程度的差异,雨量筒水深分布与水平层土壤含水率分布、灌后相邻深度层土壤含水率分布、之间的相关程度较高,其相关性随着剖面深度和层间距的增加而降低。
-
The ideal vehicle convoy is built after the uniformly distributed load is used as the equipollent load. With the maximum function of influence line area under the vehicle convoy, the probability of specific vehicle convoy passing influence line alone and the total weight distribution of specific vehicle convoy, the maximum probability distribution of traffic load effect and under return perild are obtained. Finally, this load model is applied to the example.
模型中把均布荷载作为车辆荷载的等代荷载建立了理想车队,在求出车队影响线面积最大值函数、特定车队单独通过影响线的概率和特定车队总重分布的基础上,得出了车辆荷载效应最大值概率分布和给定评估期的车辆荷载效应最大值概率分布,最后将这一荷载模型应用到实例中。
-
Secondly,the deterministic equivalence problem of theprobabilistic inequality is discussed,and the expression formula of thedeterministic equivalences for several commonly used probabilitydistributions,such as normal,exponent,uniform,β and Γ distributions etc.,are given for the linear function with respect to random variables,which solvesthe problem of the deterministic equivalence for the linear-function-class.
其次,本章讨论了概率不等式的确定性等价问题,就随机变量的线性函数类,给出了与几种常用的概率分布,如正态分布、指数分布、均匀分布、β分布、Γ分布等等,相关的确定性等价问题。
-
In this paper,we propose a novel model named distribution-free data density estimation,which is based on distribution-free(i.e.,independent of data distributions) sampling on global cumulative distribution to achieve high estimation accuracy with low estimation cost regardless of distribution models of the underlying data.
分布无关密度估计算法首先将底层数据的任意分布转换成一中间分布——累计概率分布函数。由于累计概率分布函数的输出在[0,1]之间均匀分布,因此接着对累计概率分布函数的输出随机采样,可以准确估计当前网络中数据的密度分布。
-
The aim of this paper is to answer the query on the foundation of quantum mechanics advanced by Tao Zongying in articles,Acta Mathematica Scientia,1982,2(2):183~192 and Acta Photonica Sinica,1997,26(9):769~770.It is shown,based on the globalism concept in quantum mechanics,that Landau and Lifshitz′s momentum probability distribution function of a particle in a one dimensional infinitely deep square potential well is correct,and that Pauli and other′s distribution function is incorrect.The problem of mome...
本文回答了文献1~2对量子力学提出的疑问基于量子力学的整体性概念指出,Landau和Lifshitz给出的一维无限深方势阱中粒子的动能概率分布函数是正确的,Pauli等人给出的概率分布函数是不正确的从量子测量理论的角度讨论了一维谐振子的动量概率分布问题,并且指出势能大于本征能量的概率不为零并不表示存在负动能的概率分布区域
-
In the meantime, a new relation between the coefficient of variation for a normal variate and its sample size is achieved, where the probability to make mistake Ⅱ is considered 5 The probability distribution of fatigue strength at given life under large sample size determined by a new method is found to follow the log-normal distribution and normal distribution, and a new method are developed to estimate the characteristic parameters of probability distribution of fatigue strength from the probability distribution of traditional tensile properties.
根据P-S-N曲线的要求,采用概率统计方法,导出了考虑犯Ⅱ类错误的概率时获取给定精度P-S-N曲线所需的最少子样容量,引入了不同方法获取的P-S-N曲线结果是否趋同的判别标准,得到了P-S-N曲线的寿命求解法和系数求解法获得趋同结果的条件。 5)研究了大子样条件下指定寿命时疲劳强度的概率分布,并提出了根据拉伸性能的分布估算材料疲劳强度概率分布参数的一种方法。
-
I have calculated the species diversity for 3 layers (i.e. tree layer, shrub layer and herb layer) by means of various biodiversity index formulas and analyzed the relative species abundance using 9 models of the probability density distribution functions, such as, 3 Distribution (or Beta Distribution, Weibull Distribution, Lognormal Distribution, Poisson Distribution, Binomial Distribution, Negative Binomial Distribution ,Geometric Distribution, etc.. chi-square analyses were conducted on species distribution by using the chi-square test formulated by Pearson to test which distribution function is better, the result of chi square test made it possible to reject the other 8 distribution functions, theβdistribution function performs better than other probability density functions, it has a very close approximation, which can be used for the description of relative abundances of species in forest communities in this data set.
在相对多度研究上选用了九种概率分布模型,这九种概率密度分布函数依次为:贝塔分布、Weibull分布、对数正态分布、泊松分布、二项分布、负二项分布、几何分布、对数分布和奈曼A型分布,并进行了严格的卡方检验,结果表明:其它八种分布均被遭到拒绝,只有贝塔分布获得了通过,且拟合的结果非常理想。
-
The papes utilizer Parzen's kernel estimate theory which was used in estimating the function ofprobability intensity and Chen Xiru's results in the field to strictly prove the following fact.Whenusing non-completeness knowledge sample W to find the law which W would be kept to,thefrom:is closer to real pthan the estimate of rectangular diagram.
本文借鉴Parzen提出的概率密度函数的核估计理论和陈希孺教授等研究的结论,用概率论的方法严格证明了下列事实:用非完备知识样本估计其观测值应遵循的概率分布规律时,扩散型估计:得到的分布比用直方图法得到的估计更接近于真实概率分布p。
-
Monte Carlo is a method that approximately solves mathematic or physical problems by statistical sampling theory. When comes to Bayesian classification, it firstly gets the conditional probability distribution of the unlabelled classes based on the known prior probability. Then, it uses some kind of sampler to get the stochastic data that satisfy the distribution as noted just before one by one. At last, it can obtain the posterior probability distibution of each unlabelled classes by analysing these stochastic data.
蒙特卡罗是一种采用统计抽样理论近似求解数学或物理问题的方法,它在用于解决贝叶斯分类时,首先根据已知的先验概率获得各个类标号未知类的条件概率分布,然后利用某种抽样器,分别得到满足这些条件分布的随机数据,最后统计这些随机数据,就可以得到各个类标号未知类的后验概率分布。
- 更多网络解释与概率分布相关的网络解释 [注:此内容来源于网络,仅供参考]
-
discrete probability distribution:离散概率分布,离散概率分布
discrete data 离散数据 | discrete probability distribution 离散概率分布,离散概率分布 | discrete random variable 离散随机变量,离散随机变数
-
probability distribution function:概率分布函数
probability distribution analyzer 概率分布分析器概率分布分析仪 | probability distribution function 概率分布函数 | probability of damage 破损概率
-
objective prior probability distribution:客观先验概率分布
objective pattern 物体形态特征 | objective prior probability distribution 客观先验概率分布 | objective probability 客观概率
-
joint probability distribution function:联合概率分布函数
joint probability density function 結合確率密度関数 | joint probability distribution function 联合概率分布函数 | joint probability function 联合概率函数
-
probability distribution:概率分布
贝赛尔(Bessel)函数一、贝赛尔(Bessel)函数概率分布(probability distribution)是概率论的基本概念之一,用以表述随机变量取值的概率规律. 描述不同类型的随机变量有不同的概率分布形式,其中包括二项式分布、χ2 分布、F 分布、正态分布等.
-
Joint probability distribution:联合概率分布
Joint probability, 联合概率 | Joint probability distribution, 联合概率分布 | K means method, 逐步聚类法
-
Joint probability distribution:连系概率分布
Joint probability, 连系概率 | Joint probability distribution, 连系概率分布 | K means method, 慢慢聚类法
-
probability distribution analyzer:概率分布分析器概率分布分析仪
probability density function 概率密度函数 | probability distribution analyzer 概率分布分析器概率分布分析仪 | probability distribution function 概率分布函数
-
Stationary probability distribution:稳态概率分布
威布尔概率分布:Weibull probability distribution | 稳态概率分布:Stationary probability distribution | 定态概率分布:stationary probability distribution
-
Stationary probability distribution:定态概率分布
稳态概率分布:Stationary probability distribution | 定态概率分布:stationary probability distribution | 概率分布模型:probability distribution model