- 更多网络例句与极限集相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In the fourth chapter we discuss the set of chain equivalent points of chain recurrentpoints,the set of unilateral γ-limit points and topological entropies of tree maps.
在第四章,我们讨论树映射的链等价集、单侧〓-极限集和拓扑熵。
-
In the first part, for competitive discrete-time dynamical systems on a strongly ordered topological vector space, we prove that any α-or ω-limit set is unordered and lies on some invariant hypersurface with codimension one, which generalizes M.
在第一部分中,对于强序拓扑向量空间上的竞争离散动力系统,我们研究了极限集的序结构和极限集的几何位置,证明了任何α-或ω-极限集是无序的且位于一个完全无序的,余维为1的不变Lipschitz流形上。
-
In a compact system, the limit set of a point can b e countable or uncountable .
紧空间上的动力系统中一点 x的极限集可能是可数的也可能是不可数的。
-
After these limit sets are discussed thoroughly, the structure of system can be determined approximately.
当这些极限集形式被讨论清楚之后,系统的基本的定性结构就可以确定了。
-
Relations between chain recurrent sets and generalized positive limit sets are also concerned.
而链回归集和广义正向极限集之间的关系将会一并探讨。
-
In 1967, Strauss and Yorke introduced the concept of generalized positive limit sets for asymptotic autonomous differential equations.
1967年, Strauss和Yorke引介渐进自律微分方程当中的广义正向极限集。
-
In Chapter 1, we state some notions and results on the limit set and the attractor of Conley invariant set theory, and give some sufficent condtions for an invariant set to be a quasi-attractor.
总共分四章。第一章,简要介绍了C.Conley不变集理论中有关极限集,吸引子的概念和结果,并给出了判定不变集为拟吸引子的一些充分条件。
-
By using the special partial orders on the tree. we prove: every ω-limit point not in the closure of periodic point set 〓 has the infinite orbit;Ω-P.
第二章主要讨论树上连续自映射的若干动力性质,给出了连续树映射的ω极限集、非游荡集的一些拓扑结构。
-
Are countable sets:Λ-Γ,〓-Γ are either empty or countably infinite, where Γ denotes the set of γ-limit points of f; tree map's depth of attracting center is finite and the attracting center is Γ provded all the branching points are periodic points. In chapter Ⅲ. we discuss certain relationship between isolated chain recurrent point and eventually periodic point of some continua.
主要利用树的特殊偏序关系证明了:不在周期点集闭包中的ω极限点都有无限轨迹;Ω-〓,Ω-Γ为可数集,Λ-Γ,〓-Γ或为空集或可数无限,其中Γ为f的γ极限点集;当分支点都是周期点时,连续树映射的吸引中心深度有限,且吸引中心就是Γ。
-
Thus we fist study the relation between the 〓 transformations of〓 and its fixed points carefully.Then we give several important properties ofthis special nonelementary subgroup of 〓.
其次,我们对这种非初等群的不动点、极限集及其元素进行详细研究,得到了非初等群判别准则和〓型不等式。
- 更多网络解释与极限集相关的网络解释 [注:此内容来源于网络,仅供参考]
-
alpha capacity:容量
almost significant 殆显著的 | alpha capacity 容量 | alpha limit set 极限集
-
alpha limit set:极限集
alpha capacity 容量 | alpha limit set 极限集 | alphabetical 字母的
-
cluster set:凝聚集
极限集:limit set | 凝聚集:cluster set | 水平集:Level Set
-
greatest lower bound:最大下界,最大下限
greatest limit 最大极限 | greatest lower bound 最大下界,最大下限 | greatest lower cluster set 最大聚值集
-
upper limit on the right:右上极限
12852,"upper limit on the left","左上极限" | 12853,"upper limit on the right","右上极限" | 12854,"upper ordinate set","上纵标集"
-
limit point:极值点
极限环:limit cycles | 极值点:Limit-point | 极限集:limit set
-
set of continuum power:连续统势的集
set of condensation points 凝结点集 | set of continuum power 连续统势的集 | set of limit 极限集合
-
set of limit:极限集合
set of continuum power 连续统势的集 | set of limit 极限集合 | set of lower bounds 下界集
-
set of lower bounds:下界集
set of limit 极限集合 | set of lower bounds 下界集 | set of measure zero 零测度集
-
phyllody:变叶病
limit set 极限集(合) | phyllody 变叶病 | umiak (爱斯基摩人所用的)木架蒙皮船