- 更多网络例句与极限序数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
All superclasses of closed unbounded classes are stationary and stationary classes are unbounded, but there are stationary classes which are not closed and there are stationary classes which have no closed unbounded subclass ( such as the class of all limit ordinals with countable cofinality ).
所有闭合无界类的超类是固定的并且固定类是无界的,但是有着不闭合的固定类并且有着没有闭合无界子类的固定类(比如带有可数共尾性的所有极限序数的类)。
-
For example, the cofinality of ω is ω, because the sequence ω·''m''( where ''m'' ranges over the natural numbers ) tends to ω; but, more generally, any countable limit ordinal has cofinality ω.
例如,ω的共尾性是ω,因为序列ω·''m''(这里的''m''取值于自然数之上)趋向于ω;但是,更加一般的说,任何可数极限序数都有共尾性ω。
-
Notice that a number of authors define confinality or use it only for limit ordinals.
注意很多作者只对极限序数定义或使用共尾性。
-
Large ordinals can also be defined above the Church-Kleene ordinal, which are of interest in various parts of logic.
因此对于极限序数,存在着带有极限α的一个δ-标定的严格递增序列。
-
For example, the class of all limit ordinals is closed and unbounded : this translates the fact that there is always a limit ordinal greater than a given ordinal, and that a limit of limit ordinals is a limit ordinal (a fortunate fact if the terminology is to make any sense at all!).
例如,所有极限序数的类是闭合且无界的:这解释了总是有一个极限序数大于给定序数,而且极限序数的极限是极限序数的事实。
- 更多网络解释与极限序数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
limiting function, limit function:极限函数
极限定理|limit theorem | 极限函数|limiting function, limit function | 极限序数|limit ordinal number
-
limit on the right:右极限
limit on the left 左极限 | limit on the right 右极限 | limit ordinal number 极限序数
-
limit ordinal number:极限序数
limit on the right 右极限 | limit ordinal number 极限序数 | limit point 极限点
-
limit point:极限点
limit ordinal number 极限序数 | limit point 极限点 | limit point type 极限点型
-
nonisotropic line:非迷向线
nonhomogeneous linear system of differential equations 非齐次线性微分方程组 | nonisotropic line 非迷向线 | nonlimiting ordinal 非极限序数
-
nonlimiting ordinal:非极限序数
nonisotropic line 非迷向线 | nonlimiting ordinal 非极限序数 | nonlinear equation 非线性方程