- 相关搜索
- 约束极小化
- 更多网络例句与极小化相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The properties of four factorized chi-square forms, which are used in minimization of correlated data, are studied, including their biasness and unbiasedness.
研究了关联实验数据的四种因子化形式的χ2 表达式及其极小化性质,同时讨论了极小化估计值的有偏性与无偏性。
-
The basic idea of Tikhonov regularization is that linear compact operator equation of the first kind is replaced by the minimization problem of Tikhonov functional, the paper demonstrates the minimization of Tikhonov functional is an well-posed problem. In the end, the paper suggests a new type of iterative algorithm to solve inverse problems of parameter identification for one-dimension parabolic partial differential equation .
本文论证了Tikhonov泛函极小化问题是适定的,即满足西安理工大学硕士学位论文解的存在性、解的唯一性和解连续依赖于数据的稳定性:并且此极小化问题等价丁求解第一类方程的正规方程。
-
Using level-set method, mathematical representation for contimuum structures is proposed by means of the vector of level-set, and the general structure topology optimization can be expressed by a constrained functional minimization problem of a set of level set functions.
其次利用水平集方法将一般拓扑优化问题描述为一组水平集函数的约束泛函极小化问题,应用敏度分析,给出了此泛函极小化数值迭代求解公式,即水平集演化方程。
-
We also construct an algorithm for minimizing its Moreau-Yosida regularization, because this is a smooth convex optimization problem.
极小化一个凸函数可以采用在UV-空间分解理论基础上提出的概念型超线性收敛算法,也可以采用极小化这一凸函数的Moreau-Yosida正则化函数的算法,因为这是一个凸规划的光滑最优化问题。
-
First, we extend the general finite element method from the function surface to the parameter function. Second, we bring this kind of method into the design of rational Bézier minimal surface. Third, we transform the problem of Dirichlet energy function into the problem of minimizing a discrete objective function.
首先推广了函数曲面中的有限元方法,进而研究如何针对参数曲面使用有限元方法,并把该方法引入到有理Bézier极小曲面造型的设计中,从而将连续的Dirichlet能量函数极小化问题,转化为一个离散形式的目标函数的极小化问题。
-
The abstract result contains several concrete results in the literature and can also be used to deal with some new cases for resonant differential equations.In the introduction, we briefly introduce the development process of the variational methods. In Chapter 2, we list some basic knowledges refering to the variational methods, including the Sobobev space,—△ operator, the weak solution and the minimizing sequence methods and some minimax theorems. In Chapter 3, we introduce the research process of Hamiltonian system of second order and the semilinear elliptic problems, using the methods introduced previously. In Chapter 4, we prove the main theorem of the thesis, and apply it to the problems in the previous Chapter, and can also be applied to some new resonant cases.
在前言中,简要介绍了变分法的产生、发展过程,在第二章中我们介绍了有关变分法的一些基本知识,包括Sobolev空间,—△算子,弱解,极小化序列方法和一些极小极大定理,在第三章中我们介绍了非线性项有界或满足次线性条件,以及它满足推广的Ahmad-Lazer-Paul条件时,二阶Hamiltonian系统和半线性椭圆问题的研究历程,最后在第四章中我们证明了本论文的主要定理,并把它应用到第三章的问题中,使得前面的几种共振的情形都可以统一到这个抽象的结果中。
-
It is concerned with the optimal design of cylindrical shell on minimax deflection and minimal compliancy with arbitrary axisymmetrical boundary conditions and radial pressure, under the condition of the volume being constant.
研究在任意轴对称边界条件下和任意轴对称分布载荷作用下体积保持常数的圆柱壳的两类优化设计问题:极小化圆柱壳的最大挠度和极小化圆柱壳的柔度。
-
The generalized criterion for minimum zone in the determination of form error of surface is presented on the basis of linear minimax techniques, and the criteria of such surfaces as for cylindricity and straightness with arbitrary direction are derived from this generalized criterion.
本文讨论形状误差最小区城的判别准则和判别方法。根据线性极差极小化问题解的特征,给出形状误差最小条件的统一判别准则。推导出各种形状误差最小区域判别法(包括圆柱度误差和任意方向直线度误差),并在几何判别的基础上得出代数判别的格式。
-
E. thickness of the copper wire wall, length of the single conductor wire, height of the solenoid, the exciting current and the current density, the working temperature of the conductor, time of exciting and demagnetizing, the cooling water pressure and flux density, etc..
所建立的数学模型包含3个目标函数(即能耗极小化目标函数、铜耗极小化目标函数和纯铁用量极小化目标函数)、7个设计变量(即铜管规格参数a、b、t,线圈匝数N〓、N〓,铁铠磁通密度B〓和冷却水压p)和8类14个约束条件(即铜管壁厚、单饼导线长度、螺线管高度、激磁电流与电流密度、导体工作温度、激退磁时间,冷却水压和铁铠磁通密度等约束条件)。
-
Secondly, in a more generalized framestructrue--lattice-ordered monoids,the notion of lattice-valued Mealy-type automata is introduced,we traverse some algebraic properties of this automata and investigate the congruences and homomorphisms of this type automata.Our main results indicate that the algebraic properties of lattice-valued Mealy-type automata have Close links to the algebraic properties of lattice-ordered monoids which automata take values in.Futhermore we study the minimization of lattice-valued Mealy-type automata and provide an algorithm to achieve the minimal lattice-valued Mealy-type automata within finite steps.
其次,在更一般的框架—格半群意义下,提出具有输入和输出字符的自动机——格值Mealy自动机的概念,从代数角度出发较详细地研究了此类自动机具有的性质,同时研究了此类自动机的同余和同态,揭示了此类自动机的代数性质和格半群的紧密联系,最终研究了格值Mealy自动机的极小化问题,并给出了在有限步可实现此极小化的算法。
- 更多网络解释与极小化相关的网络解释 [注:此内容来源于网络,仅供参考]
-
minimalization:极小化 取极小值
minimality 最小 最小性 极小性 | minimalization 极小化 取极小值 | minimallatencycoding 最快取数编码
-
minimax decision function:极小化极大决策函数
极小化极大解|minimax solution | 极小化极大决策函数|minimax decision function | 极小化极大序贯决策函数|minimax sequential decision function
-
minimax sequential decision function:极小化极大序贯决策函数
极小化极大决策函数|minimax decision function | 极小化极大序贯决策函数|minimax sequential decision function | 极小化极大原理|minimax principle
-
minimax principle:极小化极大原理
极小化极大序贯决策函数|minimax sequential decision function | 极小化极大原理|minimax principle | 极小化模型|minimization model
-
minimax solution:极小化极大解
极小化极大估计|minimax estimate | 极小化极大解|minimax solution | 极小化极大决策函数|minimax decision function
-
minimax strategy:极小化极大策略
minimax solution 极小极大解 | minimax strategy 极小化极大策略 | minimax test 极小极大检验
-
minimax theorem:极小化极大定理
minimax test 极小极大检验 | minimax theorem 极小化极大定理 | minimax 极大极小
-
minimizing method:极小化法
minimization 极小化 | minimizing method 极小化法 | minimizing sequence 极小化序列
-
minimizing sequence:极小化序列
minimizing method 极小化法 | minimizing sequence 极小化序列 | minimum 最小
-
minimizing:极小化
minimization 极小化 | minimizing 极小化 | minimum 最小