- 更多网络例句与本原多项式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Some basic properties of σ- LFSR over F4 are studied, such as nonlinearity, cycle structure distribution of state graph, the largest period and counting problem related. The conclusions are as follows:The coefficient ring of σ-LFSR is isomorphic to the matrix ring over F,. The cycle structure of σ- LFSR is consistent with that of the determinant of the corresponding polynomial matrix if and only if the feedback polynomial of - LFSR does not contain nontrivial factor over F2,. The counting formula of the number of σ- LFSR with inconsistent cycle structure is also showed in that part. The period of σ-LFSR with degree n is maximum if and only if the determinant of the corresponding polynomial matrix is the primitive polynomial with order 2n over F2,.
本文研究了有限域F_4上的σ-LFSR的一些基本性质,如非奇异性、状态图的圈结构的分布、最大圈的充要条件及相关的计数问题等,得到以下结论:σ-LFSR的系数环同构于F_2上的矩阵环;σ-LFSR的状态图的圈结构与对应的多项式矩阵的行列式的圈结构一致的充要条件为σ-LFSR的反馈多项式不含有非平凡的F_2上的因式,给出了圈结构不一致的σ-LFSR的计数公式; n次σ-LFSR周期达到最大,当且仅当对应多项式矩阵的行列式为F_2上的2n次本原多项式。
-
Finally,the circuit model is simulated by XILINX ISE 5.2,and the simulation result is correct. Reed-Solomon code ; Galois field ; multiplier ; polynomial basis ; normal basis ; VHDL
正则基下的乘法器运算方便,便于VLSI电路的实现。2自然基下有限域元素的表示方法本原多项式f=x4+x3+1定义了一个GF(24)有限域
-
This paper is generaly devided into three parts,The first prepare knowledge,introduceing some conceptions asssociated with the polynomial ring and ring of power series such as power-zero element,inverse element and primitive polynomia and so on,prepare to introduce characters of power series.
本文主要分为以下三部分:首先介绍与环、多项式环、幂级数环密切相关的一些概念,如幂零元、可逆元、本原多项式等,为接下来介绍幂级数环的定义及其性质做下铺垫;然后着重讨论了环的性质,加深对多项式环与幂级数环的理解;最后讨论了多项式的性质,并将这些性质推广到幂级数环中,这也是本文的重点所在。
-
Deterministic irreducible polynomial and primitive polynomial over finite rings, i. e. polynomial rings with coefficients in finite fields, are obtained.
在系数属于有限域的多项式环即有限环上,给出确定型的不可约多项式和本原多项式。
-
The correlation between the degree of the polynomial and its irreducible factors is analyzed, and then a sufficient and necessary condition on judging whether a polynomial of arbitrary degree n over finite fields is irreducible or not is presented.
分析了多项式次数与其不可约因式之间的内在联系,给出了有限域上任意n次多项式是否为不可约多项式、本原多项式的一个充要条件。
-
An efficient and deterministic method is proposed to determine whether a polynomial over finite fields is irreducible or not.
提出了一个判定有限域上任一多项式是否为不可约多项式、本原多项式的高效的确定性算法。
-
In Z2 to judge whether a polynomial primitive polynomial, and the right to the inverse polynomials.
在Z2中判断一个多项式是否本原多项式,并能对给定的多项式求逆。
-
An implementation scheme of σ-LFSR based on trinomial primitive polynomial is given.
给出了一种基于三项式本原多项式的σ-LFSR实现方案。
-
This algorithm is used which not only gives the M sequence generated by primitive polynomial method of calculation as well as prepare the M sequence signal generation algorithm, and the preparation of the relevant identification method algorithms.
本算法里面不但给出了用于M序列生成的本原多项式计算方法,同时编写了M序列信号的生成算法,并编写了相关辨识方法的算法。
-
This paper mainly deals with distribution of primitive polynomials and primitive elements over finite fields. LetFq be a finite field of q elements with characteristic p , xn + a1xn-1 +...+ an-1x + an be a polynomial over Fq .
本文主要研究有限域上本原多项式及本原元的分布,设F_q表示有q个元素的有限域,q为素数的方幂,F_q是F_q的多项式环,文献[10][11]中证明在F_q上,存在可预先指定a_1,a_2的n≥7次本原多项式。
- 更多网络解释与本原多项式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
primitive period strip:本原周期带
本原周期格子 primitive period parallelogram | 本原周期带 primitive period strip | 朴多项式 primitive polynomial
-
primitive periods:原始周期
primitive period system 原始周期 | primitive periods 原始周期 | primitive polynomial 本原多项式
-
polynomial representation:多项式表示
链环多项式:Link polynomial | 多项式表示:polynomial representation | 本原多项式:primitive polynomial
-
primitive polynomial:本原多项式
primitive periods 原始周期 | primitive polynomial 本原多项式 | primitive recursive attribute 原始递归属性
-
primitive polynomial:朴多项式
本原周期带 primitive period strip | 朴多项式 primitive polynomial | 本原射影 primitive projection
-
primitive recursive attribute:原始递归属性
primitive polynomial 本原多项式 | primitive recursive attribute 原始递归属性 | primitive recursive function 原始递归函数