- 更多网络例句与有理数域相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A polynomial system PS over the rational number field is constructed from the formula...,in a given many-valued logic system such that follows from ...,iff the algebraic variety defined by PS is empty, iff the idealenerated by PS is trivial.
由给定的多值逻辑系统中的一组公式,。。。,,出发,构造出了一组有理数域上的多项式PS,使得是,。。。,的逻辑结论,当且仅当PS定义的代数簇为空集,当且仅当PS生成的理想是平凡理想。
-
Rational polynomial coefficient in the Rational domain can not be the judge about substituting mathematical theorem is the most important issue.
有理系数多项式在有理数域上不可约的判定定理是代数学中的重要问题。
-
In this paper, new classes of linear block codes over finite fields of the algebraicinteger ring of quadratic number fields Qd~(1/2 modulo irreducible elements with norm p or p~2 are presented. These codes can correct one error which takes from the cyclic subgroup of the multiplicative group of the finite fields. The results presented in this paper extend the corresponding results of previous papers.
在处理适用于二维信号的线性分组码时,我们考虑类数为1的有理数域二次扩域Qd~(1/2的代数整数环,利用范数为p或p~2的不可约元构造有限域,给出剩余类域的一组完全陪集代表元系,从而构造出一类有限域上的线性分组码,当错误取值于有限域乘法群的一个循环子群时,所得到的适用于二维信号的线性分组码可以纠单个错,推广了文[14-16]的结果。
-
The distinguished method of the integer polynomial which is irreducibled on the region of rationality what is Eisenstein have been given in the article [1].This is not an essential condition but an sufficiency.
文[1]中给出了整系数多项式在有理数域上不可约的一个判别方法——艾森斯坦判别法,这是一个充分条件而不是必要条件。
-
There is reason coefficient polynomial in there is reason few area top can't invite of judge axioms is algebra learned of important problem.
翻译一段数学上的东西,高手帮忙下'''有理系数多项式在有理数域上不可约的判定定理是代数学中的重要问题。
-
The division with surplus, the comprehensive division and Eisenstein Test applications on polynomial that can not be divided are mainly discussed; the sufficient condition of that polynomial with coefficient being integer has no integer root, that cubic polynomial with coefficient being integer is irreducible in rational domain and that polynomial with coefficient being integer has not two completely same roots are summed up.
主要论述了带余除法、综合除法及不可约多项式艾森斯坦判别法的应用;总结出了整系数多项式的无整数根的充分性,三次整系数多项式在有理数域上不可约的充分性,整系数多项式无重根的充分性。
-
Especially, the neumerical result would be accurate over the rational number field.
特别地,在有理数域上用计算机求得的结果是精确的。
-
We show that there is a polynomial over the rational number field Q corresponding to a given porpositional formula in a given many-valued logic.
本文证明了对于给定的多值逻辑系统中的命题公式,存在有理数域上的多项式与之对应。
-
On the region of rationality, what condition satisfies the integer polynomial only to have the reducibility?
摘要在有理数域上,满足什么条件的整系数多项式才具有可约性呢?
-
After this, the values of m-th Gauss sums have been determined for small m(= 3,4,···, 12) by using arithmetic properties of cyclotomic fields Q- Recently the formulas of Gauss sums are determined in "self-conjugate" and "index 2" cases in which the Gauss sums belongs to the rational number field and certain imaginary quadratic field respectively.
继高斯之后,人们用代数数论对于m较小情形计算出m次高斯和。近年来,人们对于&自共轭&情形和&指数2&情形算出高斯和。对于这两种情形,高斯和的值分别属于有理数域和虚二次域。
- 更多网络解释与有理数域相关的网络解释 [注:此内容来源于网络,仅供参考]
-
algebraic number:代数数
ial 2) 在代数数(或者函数)域求值 命令格式: evala(expr); # 对表达式或者未求值函数求值 evala(expr,opts); #求值时可加选项(opts) 所谓代数数(Algebraic number)就是整系数单变量多项式的根, 其范围比有理数大, 真包含 于实数域,
-
region of convergence:收敛区域
接受区 region of acceptance | 收敛区域 region of convergence | 有理区域;有理数域 region of rationality
-
directory entry:目录表项
图像域数据即目录表项(Directory Entry)有12个字节长,具体结构如下:2个字节的Tag,它说明这个域的特性;2个字节的Type(类型描述符),它说明数据类型ASCII,短,长,字节,有理数,以及IEEE浮点或双倍字长.
-
field of real numbers:实数域
field of rationals 有理数域 | field of real numbers 实数域 | field of scalars 系数域
-
field of rational numbers:有理数域
field of rational fractions 有理分式域 | field of rational numbers 有理数域 | f ield of rationality 有理性域
-
field of rational functions:有理函数域
field of numbers 数域 | field of rational functions 有理函数域 | field of rationals 有理数域
-
field of rationals:有理数域
field of rational functions 有理函数域 | field of rationals 有理数域 | field of real numbers 实数域
-
rational number field:有理数域
有理数|rational number | 有理数域|rational number field | 有理同调群|rational homology group
-
unit circle:单位圆
如苏东坡所云:"不识庐山真面目,只缘身在此山中".上面由有理数域Q扩至复数域,不是孤立的接受及,我们还加入了足够的元素,使新的社会仍然保持Q的"域"(field)质:在许多数学分支里,我们都用单位圆(unit circle)上的点来平均: .