- 更多网络例句与有效数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Uariance: the report on the results of the arithmetic mean of the two valid.
结果的表述:报告算术平均值的二位有效数。
-
This thesis mainly discuss following issues, Theory and simple expressions for array covariance matrixes are derived when angular spread functions are symmetric distribution functions, i. e. the Uniform distribution, the Gauss distribution, the Laplace distribution and the Von Mises distribution, and a non-symmetric distribution function, i. e. the Gamma distribution. And the relation between the effective signal subspace and the array number, or and the nominal angle of the distributed source, the angular spread, the distributed functions, and the Signal-to-Noise Ratio is gained. The dimension of the effective signal subspace increases with increment of the array number. And it is more obvious to the non-symmetric distribution. The dimension of the effective signal subspace decreases with increment of the nominal angle. And the distributed source is equal to a point source as θ=π/2. The dimension of the effective signal subspace increases with increment of the angular spread.
本论文针对阵列信号处理中广泛存在的分布源现象,主要讨论了以下问题:推导了角度分布函数分别为对称的均匀分布、高斯分布、拉普拉斯分布、Von Mises分布和非对称的伽马分布时,分布源阵列接收信号协方差阵的严格模型和简化模型,得到了单个分布源的有效信号子空间随阵元数、分布源中心角、分布角、角度分布函数和信噪比的变化规律:随着阵元数的增加,对所有角度分布函数的有效信号子空间维数也随着增加,且非对称分布函数的有效信号子空间充满整个空间的可能性更大;随着分布源中心角逐步增加,有效信号子空间维数逐步减小,当θ=π/2时,等价于点源情形;随着分布源分布角逐渐加大,有效信号子空间维数也随之增加,直到有效信号子空间充满整个空间;随着信噪比的增加,有效信号子空间维数有一定程度的减少。
-
On a calculator, the increase of the least significant digit in the result of a calculation to the next higher number where the subsequent digit in the result is 5 or above.
在计算器中,当计算结果的最低有效位的下一位数字等于或大于5时,最低有效数加1。
-
Where the subsequent digit is 4 or below, the least significant digit remains unchanged.
当其小于或等于4时,最低有效数保持不变。
-
The first two digits are a multiplicand.
前两位为有效数。
-
By analyzing the basic rules of array privatization and the determinant conditions of the parallelizable loop, this thesis proposes an array privatization technique that is significant for the exploitation of loop parallelism. Then, the thesis presents the designing and the implementation of the effective array privatization technique based on the accurate array data-flow analysis.
论文分析了数组私有化的基本准则,结合循环并行化的判定规则,得到对开发循环并行性有意义的有效数组私有化条件,并且研究实现了基于数组数据流分析的数组私有化技术。
-
Without utility function, group preference relation on alternative set was constructed in this paper by means of efficient numbers of alternatives, which are described by Pareto efficient solutions of a group of multiobjective decision making problems respectively considered by decision makers.
本文撇开效用函数的介入,直接依据由各多目标决策问题的Pareto有效解表示的供选方案的有效数,引进了决策群体在供选方案集上的偏爱关系。
-
Without utility function, group preference relation on alternative set was constructed in this paper by means of efficient numbers of a lternatives, which are described by Pareto efficient solutions of a group of mul tiobjective decision making problems respectively considered by decision makers.
一些学 者曾借助群体效用函数引进群体多目标决策问题有关效用解的概念,并且给出若干求解的方法。本文撇开效用函数的介入,直接依据由各多目标决策问题的Pareto有效解表示的供选方案的有效数,引进了决策群体在供选方案集上的偏爱关系。
-
It includes the lowest ten numbers, the highest number, every number that translates to a single-character Roman numeral, and a random sampling of other valid numbers.
它包含了最小的十个数,最大数,每个罗马数字单字符对应的数,以及其他随即挑选的有效数样本。
-
Thecompare of genetic map between Lowes and ours showed 26 homology marker situ,which occupied 21.1% of the marker situ in the experiment. 81 QTLs were detected for 11 agronomic traits. 4 QTLs were detected for plantheight, which explained 10.3%~28.9% of trait variance; 2 QTLs were detected forNo. of effective 1-st branches, which explained 22.1%~47% of trait variance; 16QTLs were detected for effective branches height, which explained 12.2%~51.8% oftrait variance; 15 QTLs were detected for length of main inflorenscence, whichexplained 7.4%~26.6% of trait variance; 5 QTLs were detected for effective siliquesof main inflorenscence, which explained 11.2%~25% of trait variance; 1 QTLs weredetected for density of main infiorenscence, which explained 17.3% of trait variance;12 QTLs were detected for length of silique, which explained 24%~36.7% of traitvariance; 2 QTLs were detected for seed per sillique, which explained 9.6% and16.9% of trait variance; 2 QTLs were detected for 1000 seed weight, which explained26%~13.7% of trait variance; 11 QTLs were detected for Total effective siliques perplant, which explained 14.8%~47.2% of trait variance; 11 QTLs were detected forplant height, which explained 14.3%~32.8% of trait variance.
其中,株高检测到4个QTLs,解释性状表型变异的10.3%~28.9%;一次有效分枝数检测到2个QTLs,解释性状表型变异的22.1%和47%;有效分枝部位检测到16个QTLs,解释性状表型变异的12.2%~51.8%;主花序长度检测到15个QTLs,解释性状表型变异的7.4%~26.6%;主花序有效角数检测到5个QTLs,解释性状表型变异的11.2%~25%;主花序角密度检测到1个QTLs,解释性状表型变异的17.3%;角果长度检测到12个QTLs,解释性状表型变异的24%~36.7%;每角粒数检测到2个QTLs,解释性状表型变异的9.6%和16.9%;千粒重检测到2个QTLs,解释性状表型变异的26%和13.7%;单株有效角果总数检测到11个QTLs,解释性状表型变异的14.8%~47.2%;单株产量检测到11个QTLs,解释性状表型变异的14.3%~32.8%。
- 更多网络解释与有效数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
effective data transfer rate:有效的数据转移率
有效数元组位置 Effective Byte Location | 有效的数据转移率 Effective Data-Transfer Rate | 有效双字组 Effective Double Word
-
significant digits:有效数字;有效位
有效数字;有效位 significant digits | 有效数[字] significant figure | 无符号整数;正整数 signless integers
-
significant figure:有效数,有效数字
tire rolling 紧箍轧机 | significant figure 有效数,有效数字 | estheticism 唯美主义
-
significant figure:有效数
significant digit 有效数 | significant figure 有效数 | significant quantity 有效量
-
significand:有效数
signed 有符号的 | significand 有效数 | simple binding 简单绑定
-
significand underflow:有效数下溢
9 significand overflow 有效数上溢 | 9 significand underflow 有效数下溢 | 9 sign-magnitude representation 符号-幅值表示法
-
significand overflow:有效数上溢
9 significand 有效数 | 9 significand overflow 有效数上溢 | 9 significand underflow 有效数下溢
-
last significant figure:最后有效数
最末段指示符 last segment indicator,LSI | 最后有效数 last significant figure | 前次模拟的 last simulated
-
loss of signification:有效数损失
"信号损失","loss of signal,LOS" | "有效数损失","loss of signification" | "失去同步","loss of synchronism"
-
most significant character:最高位字符,最高有效字符
most significant byte ==> 最高有效字节=>最上位のバイト | most significant character ==> 最高位字符,最高有效字符 | most significant digit ==> 最高有效数,最高有效位数字