英语人>词典>汉英 : 曲率形式 的英文翻译,例句
曲率形式 的英文翻译、例句

曲率形式

词组短语
curvature form
更多网络例句与曲率形式相关的网络例句 [注:此内容来源于网络,仅供参考]

Hausdorff convergence; almost nonnegative Ricci curvature; Betti number; harmonic 1-form; nilpotency; splitting theorem; positive sectional curvature; gradient curve

基础科学,数学,几何、拓扑Hausdorff收敛;几乎非负Ricci曲率;贝蒂数;调和1-形式;幂零指标;分裂定理;正截面曲率;梯度曲线

In Riemannian manifolds, one studies Riemannian metric, covariant derivative, Riemannian connection, basic properties of the Riemann curvature tensor, curvature forms etc.

黎曼流形部分主要涉及黎曼度量,黎曼流形的定义,切向量场的协变微分,黎曼联络,黎曼几何的基本定理,曲率张量,曲率形式等概念和理论。

Chapter 2 introduces some propaedeutics of classic differential geometry, which include the first basic form, the second basic form, normal curvature, main curvature, mean curvature, Gauss curvature, unit normal vector, main vector, etc.

第二章介绍一系列的预备知识,主要是关于古典微分几何中第一,第二基本形式的定义,法曲率,主曲率,平均曲率,Gauss曲率,单位法向量,主方向等的定义。

If we give some restrician to the intrinsic quantities of submanifolds, such as second fundamental form, scalar curvature,Ricci curvature or sectional curvature,then we can get some new property of the submanifolds.The procedure is called pinching problem of submanifolds.

对子流形的第二基本形式模长平方s,数量曲率R,Ricci曲率R_及截面曲率R_等内在量,加以某种限制,从而得到子流形的某些性质,叫做子流形的pinching问题。

On the other hand, Let M~n be an z-dimensional complete noncompactoriented submanifold with finite total curvature in an-dimensional simplyconnected space form F~ of constant curvature c. In this thesis, we provethat if M satisfies one of the following: n≥3, c=0 and integral from n=M H~n<∞;n≥5, c=-1 and H<1-2/n~(1/2); n≥3, c=1 and H is bounded, where Hdenotes the mean curvature of M. then the dimension of the space of L~2 harmonic1-forms on M is finite.

本文还证明:若具常曲率c的完备单连通空间型F~中具有有限全曲率的n维完备非紧可定向子流形M满足下面条件之一:n≥3,c=0且integral from n=M H~n<∞;n≥5,c=-1且H<1-2/n~(1/2;n≥3,c=1且H有界的,则M上L~2调和1-形式空间的维数是有限的,这里H为M的平均曲率。

The Pinching problems are discussed on the sectional curvature of compact space-like pseudo-umbilical submanifolds M~n with parallel mean curvature vector in De Sitter space S~_p, and the theory of reduction of the codimension is obtained in De Sitter space through evaluating the Laplacian of square of the length.

讨论了De Sitter空间Snp+p中,具有平行平均曲率向量的紧致类空伪脐子流形Mn的截面曲率的拼挤问题,通过估计第二基本形式模长平方的Laplacian,得到了De Sitter空间中的余维数压缩定理。

Some properties of inversions are proved, It indicates that the inversion is conformal, the image of line of curvature is still the line of curvature of the inversion S of the hypersurface S, the principal curvature, the total curvature, and mean curvature of S are the functions...

在n-1维超曲面的反图变换中,示明反图变换为保角表示法,曲率线系的反影仍为反超曲面的曲率线系,反超曲面的主曲率,全曲率与平均曲率为原超曲面的主曲率的函数等。 3。最后导出公式(1)在四维空间与通常空间之特殊形式

Then, the first and second fundamental forms, Gaussian curvature and mean curvature of the surfaces are directly calculated according to the principles of differential geometry.

首先,根据微分几何中的基本知识,得到了该种度量形式下的平移曲面的第一、第二基本形式以及高斯曲率和平均曲率;然后,主要利用高斯曲率和平均曲率之间的线性关系和平方关系,得到了这类平移曲面的分类定理。

In this article,we mainly study the space-like submanifolds with parallel mean curva-ture vector,constant scalar curvature or constant square length of the second fundamental form,respectively.We obtain some pinching theorems and rigidity results by estimating Laplace of the square length of the second fundamental form of the such submanifolds and using yaus maximum principle or Stokes Theorem.

本论文主要研究de Sitter空间中具有平行平均曲率向量、常数量曲率或第二基本形式模长平方是常数的三类类空子流形,并通过分别估计三种情形下子流形的第二基本形式模长平方的Laplace,利用Yau的极大值原理和Stokes定理,获得了这些子流形的一些拼挤定理和刚性定理。

Using the mathematical tool"DifferenceGeometry",it is possible to define the discrete geometric metrics such as discretefirst fundamental form,discrete second fundamental form,discrete unit mainnormal vector,discrete Gauss curvature,discrete mean curvature and discreteLaplacian.

首先,运用"差分几何"这一工具,可以构造离散第一、第二基本形式,离散单位主法向,离散高斯曲率,离散中曲率等离散几何量和离散Laplace算子。

更多网络解释与曲率形式相关的网络解释 [注:此内容来源于网络,仅供参考]

curvature form:曲率形式

形式发票(Proforma Invoice)是一份写有所销售货物名称、规格、单价等信息的非正式的参考性 中,曲率形式(curvature form)描述了 上的 的 .它可以看作是 中的

form for curvature:曲率的形式

预报函数 forecasting function | 曲率的形式 form for curvature | 形式的 formal

Bianchi identity:毕安其恒等式

它涉及到协变导数:...给定流形某点的任一坐标表示,上述恒等式可以用黎曼曲率张量的分量形式表示为:另一个有用的恒等式可以由上面这些导出:...称为毕安其恒等式(bianchi identity),经常也叫第二毕安其恒等式(Second bianchi identity)或