- 更多网络例句与映射范数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
A integral equation formulation is derived based on modified Green's operator with norm less or equal to one. The integral equation is convergent for any conductivity distribution and frequency if iterative solvers are used.
利用范数小于或等于1的修正Green算子得到各向异性地层中的新积分方程,由于满足压缩映射条件,该积分方程在任意参数条件下总是迭代收敛的。
-
In chapterⅡ, Firstly, we research the derivable mappings at unit and the anti-derivable mappings at zero point on Von Neumann algebra M.
证明了在单位可导和在单位反可导的范数连续的线性映射是M上的内导子,在零点反可导的范数连续的线性映射是M上的广义内导子。
-
A integral equation formulation is derived based on modified Green's operator with norm less or equal to one.
利用范数小于或等于1的修正Green算子得到各向异性地层中的新积分方程,由于满足压缩映射条件,该积分方程在任意参数条件下总是迭代收敛的。
-
Secondly, we discuss generalizedderivable mappings at unit and Jordan derivable mappings at unit on Von Neumannalgebra, and we prove that every norm continuous linear mapping generalized deriv- able at unit is a generalized inner derivation, every norm continuous linear mappingJordan derivable at unit is a inner derivation.
其次对Von Neumann代数M上的在单位广义可导和在单位Jordan可导的线性咉射进行了讨论,证明了在单位广义可导的范数连续的线性映射是M上的广义内导子,在单位Jordan可导的范数连续的线性映射是M上的内导子。
-
Motivated by Baker\'s result, we introduce a functional index‖E‖_∞to prove that if a mapping f which is from a normed space to a normed algebra satisfying‖ab‖=‖a‖‖b‖satisfies that‖E‖_∞is bounded,then either f is bounded or f is exponential.
受到Baker的结论启发,通过引入一个泛函指标‖E‖∞,证明了从赋范空间到满足范数可乘性的赋范代数的映射f,只要满足‖E‖∞是有界的,则f要么是有界的,要么是指数的。
-
In chapter 3, we establish some partial differential inequalities on bounded starlike circlar domains and the unit ball of Banach norm in C〓. Then by using these inequalities, we can get two sufficient conditions for almost starlike mappings of order α.
第三章通过在C〓中的有界星形圆形域和复Banach范数之下的单位球上建立一些微分不等式,给出了α次的殆星映射的两个充分判别条件。
-
The objective of Chapter 2 is to give the weak convergence theorem of S ={T1 :t E G of asymptotically nonexpansive mappings in a uniformly convex Banach space without assuming that X has a Frechet differentiable norm.
本文第二章在G仅要求是一个定向网,X为不具有范数Frechet可微条件的一致凸Banach空间的情况下,给出了一族渐近非扩张映射的弱收敛定理。
- 更多网络解释与映射范数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
mapping norm:映射范数
mapping function 映射函数 | mapping norm 映射范数 | mapping of sets 集映射
-
norm preserving mapping:保范映射
norm of vector 向量的模 | norm preserving mapping 保范映射 | norm residue 范数剩余
-
mapping of sets:集映射
mapping norm 映射范数 | mapping of sets 集映射 | mapping of the boundary 边缘映射
-
norm of vector:向量的模
norm of a matrix 阵的范数 | norm of vector 向量的模 | norm preserving mapping 保范映射
-
norm residue:范数剩余
norm preserving mapping 保范映射 | norm residue 范数剩余 | norm residue symbol 范数剩余符号