- 更多网络例句与无边流形相关的网络例句 [注:此内容来源于网络,仅供参考]
-
In this paper we will mainly study the gauge fixing Yang-Mills heat flow of a principal bundle For a principle bundle with a compact seme-simple Lie group as its structure group over a compact Riemannian manifold without boundary, the evolutions of the curvature and its higher derivatives under the flow above will be derived, and the energy inequality and the Bochner type estimates will be obtained.
中文摘要:本论文主要讨论主丛上的规范固定Yang-Mills热流我们在紧致无边黎曼流形上的以半单紧致李群为结构群的主丛上,推导了在规范固定Yang-Mills热流下曲率及其高阶导数的演化方程,得到了该热流的能量不等式和Bochner估计,由此可推出单调性公式和小作用量正则性,以及曲率各阶导数的局部一致估计。
-
In this paper we will mainly study the gauge fixing Yang-Mills heat flow of a principal bundleFor a principle bundle with a compact seme-simple Lie group as its structure group over a compact Riemannian manifold without boundary, the evolutions of the curvature and its higher derivatives under the flow above will be derived, and the energy inequality and the Bochner type estimates will be obtained. Then, the monotonicity formula and the small action regularity theorem can be proved. We will give the locally uniform estimates for the higher derivatives of the curvature.
本论文主要讨论主丛上的规范固定Yang-Mills热流我们在紧致无边黎曼流形上的以半单紧致李群为结构群的主丛上,推导了在规范固定Yang-Mills热流下曲率及其高阶导数的演化方程,得到了该热流的能量不等式和Bochner估计,由此可推出单调性公式和小作用量正则性,以及曲率各阶导数的局部一致估计。
- 更多网络解释与无边流形相关的网络解释 [注:此内容来源于网络,仅供参考]
-
homology group:同调群
"流形"(manifold)的概念最早是在1854年由 Riemann 提出的(德文读者在微积分里可能会碰上"紧致"(compact)的概念. 对流形来说,紧致就是用数学语言说,就是"紧致而无边". 紧致无边流形称为闭(closed)流形. 扑空间各个维数的同调群(homology group)和同伦群(homotopy group),然后根据这