- 更多网络例句与无穷小算子相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Chapter 1 gives the background,current research process of relatedproblems and summarizes this thesis\'s work.In chapter 2,we study the Brownian motion with holding and jumping on the boundary.We use the resolvent method to obtain the infinitesimal generator because the domain of the infinitesimal generator is essentially the same as the range of the resolvent.Knowledge of this range and of the differential operator determines uniquely the infinitesimal generator.Since the semigroup generated by the DHJ is not strongly continuous,to use the nice property of strongly continuous semigroup in analytic theory,in chapter 3 we show that the dual is strongly continuous and derive ergodicity through spectral radius formulas and finally obtain the ergodic theorem by duality. In chapter 4,we discuss a class of a more general process---one dimensional Feller diffusion proposed by W.Feller in 1954.The Feller diffusion allows the possibility of jumps from boundary to boundary,not only from boundary to the interior.We give the stationary distribution of this process.
具体地,本文的结构如下:第一章给出了问题产生的背景,研究现状及本文的主要工作;第二章研究了在边界上逗留后随机跳的布朗运动,我(来源:3dABC论文网www.abclunwen.com)们用预解算子的方法得到其无穷小生成元,因为无穷小生成元的定义域本质上就是预解算子的值域,知道这个值域和微分算子形式就能唯一地决定无穷小生成元;由于DHJ过程产生的半群不是强连续的,为利用强连续半群的一些漂亮性质,在第三章中我们证明其对偶半群是强连续的,然后由谱半径公式得到遍历性并且最后由对偶得到遍历定理;第四章讨论了Feller在1954年引入的更广的一类过程----一维Feller扩散过程,Feller扩散过程允许有从边界到边界的跳发生,即不仅仅局限于从边界到内部的跳,在这一章中,我们给出了一维Feller扩散过程的平稳分布;在第五章,我们讨论了一些相关的问题,给出了DHJ过程对应的PDE问题及特征值与收敛速度的关系。
-
Using this method,we discussed for generalized Burger equation with variable coefficients and linear danping,obtained its symmetry group,simliar reduced equations,infinitesimal generator and Lie algebras;In chapter 6,using the Exp-function method,the generalized solutions of combined KdV-mKdV equation with variable coefficients are discussed.
首先介绍了Lie群分析法的基本思想,其次用Lie群分析法得到了带线性阻尼项的变系数广义Burgers方程的无穷小变换、无穷小算子的李代数结构,并具体求出了带线性阻尼项的变系数广义Burger方程的群不变解和约化方程。
-
We give another form of the infinitesimal time translation operator in algebraic dynamical algorithm so that it is more easy to use new operator to solve evolution equations.
我们给出了求解偏微分演化方程的代数动力学解法中关于时间平移的无穷小算子的构造的另一个形式,使得在应用代数动力学方法求解偏微分方程时更简洁更方便。
-
When obtaining this condition,we don\'t use any bounding technique to deal with the weak infinitesimal operator of the Lyapunov function by using the knowledge of stochastic analysis.
积分的性质,引入了适当的自由权矩阵,避免了对Lyapunov函数的弱无穷小算子进行放大,从而降低了稳定性条件的保守性。
-
Especially, if we let Φ denote the mininal Q process, and A denote the corresponding infinitestmal operator, then the primary problem is how to describe the infinitesimal operator ,D
特别地 ,记最小Q过程为Φ,对应的无穷小算子为 A ,我们的首要问题是如何刻划最小Q过程的无穷小算子 A ,D
-
In chapter 1, as a preparative knowledge, the main results about symmetry theoryand Wus method are introduced, in addition some fundamental definitions, such as trans-formation group, infinitesimal operator, prolongation, first integral, infinitesimal criterionfbr invariance of an ODE, characteristic set are recalled.
第一章中作为预备知识简单介绍了对称理论和吴方法,并给出了一些基本概念和理论,如变换群、无穷小算子、算子延拓、首次积分、微分方程在对称下不变的判别准则和微分特征列集算法。
- 更多网络解释与无穷小算子相关的网络解释 [注:此内容来源于网络,仅供参考]
-
infinitesimal displacement:无穷小位移
infinitesimal deformation 无穷小形变 | infinitesimal displacement 无穷小位移 | infinitesimal generator 无穷小算子
-
infinitesimal generator:无穷小算子
infinitesimal displacement 无穷小位移 | infinitesimal generator 无穷小算子 | infinitesimal operator 无穷小算子
-
infinitesimal operator:无穷小算子
infinitesimal generator 无穷小算子 | infinitesimal operator 无穷小算子 | infinitesimal quantity 无穷小
-
infinitesimal quantity:无穷小
infinitesimal operator 无穷小算子 | infinitesimal quantity 无穷小 | infinitesimal rigidity 无穷小刚性
-
infinitesimal quantity:極微量
infinitesimal operators 无穷小算子 | infinitesimal quantity 極微量 | infinitesimal real number 无穷小实数