- 更多网络例句与无界算子相关的网络例句 [注:此内容来源于网络,仅供参考]
-
On the other hand, we make certain study to the nonwandring property of bounded, unbounded operator semigroups ,and give out concrete application.By the theory of semigroups, we establish if {T_n}_(n≥1) is a bounded linear operator sequence onBanach space X_n converging in the sense of Kato to a bounded operator T on theBanach space X , then their nonwandering property can be inherited by each other under the appropriate conditions.
另一方面,本文对有界和无界算子半群的非游荡性也作了特别的研究,并给出了一些具体的应用;利用半群理论,还证明了算子在Kato意义下逼近时,二者之一的非游荡性可被另一个所保持;并得到了几个相应的结果。
-
In the second chapter, the suspension bridge equation on unbounded domainR1 is considered. Applying with the method of decomposing operator and thetheory of constructing some compact operator in weighted space, the existenceof global attractor is obtained.
在第二章中,运用带权空间构造一类紧算子和算子分解的方法,研究了该方程在无界区域R1上的情形,得到了其全局吸引子的存在性。
-
Specially, in Hilbert spaces, some necessaryand sufficient conditions are given in terms of the uniformly square integrability anduniform boundness of the resolvent on the imaginary axis respectively. Furthermore,we consider this robustness fordifferential equations with unbounded operatorin the delay term.
我们进一步研究了时滞项含无界算子的抽象微分方程的小时滞鲁棒稳定性,获得了一些充分必要条件,并应用所得结论讨论了具解析半群生成元的时滞系统。
-
To our knowledge there is no work on second order impulsive differential equations on infinite dimensional spaces in literature.
二阶方程不同于一阶方程,二阶方程的困难在于若把它化为一阶方程,我们将面对一个无界算子矩阵。
-
By introducing the general notion of nonwandering operator semigroup T and utilizing a basic result in normed linear space,the nonwandering property of T=e~ is investigated with the constructive method.
通过给出一般算子半群T的非游荡性概念,利用赋范空间的一个基本结果和直接的构造法证明了具有变系数的线性发展方程的强连续解半群T=etA在适当的条件下是非游荡的;另外,通过对C-半群T概念的引进,定义了一个无界算子半群etA,进一步证明了这二者关于非游荡性的联系;最后给出了一个无界算子半群etP关于非游荡性理论的刻画,其中P是微分多项式。
-
Based on the surjection of maximal monotone operators, we prove that some semilinear heat equations with weak Lipschitz nonlinear terms are exactly controllable by L〓 0, T: H〓(Ω control; Based on the critical point theorem of coercive convex functionals, we prove that some parabolic equations with Lipschitz nonlinear terms are globally approximately controllable and finite-dimensional exactly controllable by controls acting on mobile supports, and finally, we extend the results to parabolic equations in R〓.
首先利用极大单调算子的满射原理证明了半线性热方程在较弱Lipschitz条件下可通过L〓0.T;H〓(Ω控制实现精确能控。然后通过构造强制凸泛函并利用其临界点理论证明了带Lipschitz非线性项的抛物型方程可通过作用在在移动支集上的控制来实现整体近似能控与有限维精确能控,最后将整体近似能控与有限维精确能控结论推广到无界区域R〓上。
- 更多网络解释与无界算子相关的网络解释 [注:此内容来源于网络,仅供参考]
-
unbounded quantifier:无界量词
无界算子 unbounded operator | 无界量词 unbounded quantifier | 无界序列 unbounded sequence
-
unbounded interval:无界区间
无偏检验 unbiased test | 无界区间 unbounded interval | 无界算子 unbounded operator
-
unbounded operator:无界算子
无界区间 unbounded interval | 无界算子 unbounded operator | 无界量词 unbounded quantifier
-
unbounded linear operator:无界线性算子
无界解|unbounded solution | 无界线性算子|unbounded linear operator | 无界滞量|unbounded lag
-
unbounded:无界的
在有限维空间中,所有线性变换(矩阵)都是有界变换,而在无限维,很多算子是 无界的(unbounded),最重要的一个例子是给函数求导. 4. 在有限维空间中,一切有界闭集都是紧的,比如单位球. 而在所有的无限维空间中 ,单位球都不是紧的--也就是说,