- 更多网络例句与整闭包相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Computing integral closure of a finite extension is not only an important problem in commutative algebra, but also in algebraic geometry and algebraic number theory.
计算有限扩张的整闭包不但是交换代数中的一个核心问题,也很受代数几何以及代数数论发展的推动。
-
The ring C is called the integral closure of A in B.
环C叫作A在B中的整闭包。
-
In this paper,we give the representation of integral closure of a cubic extension about general Neotherian unique factorization domain (2,3 are not units). Then we give a series of integral number about a cubic extension.
本文在前人研究的基础上,去掉2,3可逆的这一条件,给出了诺特唯一分解环上的三次扩张的整闭包的描述,并由此刻画了一批该扩张下的整元。
-
Let OKbe the integral closure of the polynomial ring A = Fq in K, and UK be the group ofunits of OK .
设OK为多项式环A = Fq在K中的整闭包, UK为OK的单位群。
-
In chapter 4, Based on the orthogonality relations and duality of C-algebras, we study the decompositions of C-algebras, and give a Fourier inversion formula on C-algebras, which generalizes the Fourier inversion formula on the center of a finite group algebra over complex. As an application, we characterize the integral closure of C-algebras over the ring of integers, and show a necessary and sufficitient condition for elements of C-algbras being algbraic integral over integers.
第四章 我们应用C-代数的正交性及对偶性刻画了C-代数的一个分解,给出了C-代数上这个完全分解的Fourier反演公式,从而推广了Z分解的Fourier反演公式;作为Fourier反演公式的一个应用,我们刻画了Z在整数环Z上的整闭包,进一步我们研究了C-代数在整数环Z上的整闭包,给出了C-代数在整数环Z上为整元的一个充要条件。
-
Neotherian unique factorization domain; cubic extension; integral closure
诺特唯一分解环;三次扩张;整闭包
- 更多网络解释与整闭包相关的网络解释 [注:此内容来源于网络,仅供参考]
-
integral conoid:积分劈锥面
integral closure 整闭包 | integral conoid 积分劈锥面 | integral cosine 余弦积分
-
integral closure:整闭包
integral calculus 积分学 | integral closure 整闭包 | integral conoid 积分劈锥面
-
integral representation:整表示
整闭包|integral closure | 整表示|integral representation | 整步迭代|total step iteration
-
integrally closed:整闭
镇定|stabilization | 整闭|integrally closed | 整闭包|integral closure