- 更多网络例句与数值等式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Considering the numerically more stable properties of Normal Equation with Constraints and Hachtel's augmented matrix method for SE, all telemetered and virtual measurements are classified reasonably. Using blocked and sparse matrices technology, a new SE algorithm with computing speediness and numerical stability is proposed.
借鉴WLS估计中带等式约束的正规方程法和Hachtel法数值稳定性更强的优点,将遥测量和虚拟量测合理分类,并采用分块和稀疏矩阵技术形成了一种计算速度快、数值稳定性好的状态估计改进算法。
-
Here the deriver' self-equilibrium velocity denotes the deriver' desired equilibrium velocity accompanying that the traffic flow is in the equilibrium state. Consequently the adaptive flux model like Navier-stokes traffic equation is derived from the extended Paveri-Fontana equation. Characteristics and the linear stability are analyzed. Numerical solution of the macroscopic traffic equations verifies rationality of our model.
把适应性公式和约化Paveri-Fontana等式结合得到扩展的Paveri-Fontana方程,通过使用Chapman – Enskog方法导出类Naveri-Stokes 方程的适应性交通流模型;通过线性稳定性分析,得到了适应性交通流模型的稳定条件;通过对算例的数值分析与其它连续性模型和交通实测数据的对比,验证了我们模型的合理性。
-
In chapter 2 we propose a linear equality constraint optimization question , the new algorithm is combined with the new conjugate gradient method(HS-DY conjugate gradient method)and Rosen"s gradient projection method , and has proven it"s convergence under the Wolfe line search.In chapter 3 we have combined a descent algorithm of constraint question with Rosen"s gradient projection, and proposed a linear equality constraint optimization question"s new algorithm, and proposed a combining algorithm about this algorithm, then we have proven their convergence under the Wolfe line search, and has performed the numerical experimentation.
在第三章中我们将无约束问题的一类下降算法与Rosen投影梯度法相结合,将其推广到线性等式约束最优化问题,提出了线性等式约束最优化问题的一类投影下降算法,并提出了基于这类算法的混合算法,在Wolfe线搜索下证明了这两类算法的收敛性,并通过数值试验验证了算法的有效性。
-
The basic steps of this method are as follows.The firststep is to derive a necessary condition such that the families of quasipolynomials withone parameter,corresponding to the edges of the polytope,have pure imaginary rootsby using the Dixon's resultant for polynomials.Then to check that the casescorresponding to the parameters obtained in the first step are in fact impossible byusing the generalized Sturm criterion and some stability criteria.
其基本思路是先利用多项式方程组的Dixon结式理论导出使各棱边对应的单参数特征拟多项式有纯虚根时,参数值应满足的一个等式条件,即所谓的Dixon结式等于零,然后由广义Sturm判别法验证对所有参数值,Dixon结式不等于零,或使结式等于零的解不产生特征拟多项式的纯虚根。
-
The new approach improves the step length and the convergence is analyzed. Numerical examples are given to illustrate the effectiveness of the proposed method.
在此基础上提出了求解只带有等式约束的凸二次规划问题的新算法,该算法改进了搜索步长,分析了收敛性,通过数值算例验证了算法的有效性和优越性。
- 更多网络解释与数值等式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
numerical equality:数值等式
numerical differentiation 数值微分 | numerical equality 数值等式 | numerical equation 数字方程