- 更多网络例句与收敛幂级数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
The techniques of computing the domain of convergence and sum function and expanding functions in several variables to power series of functions in several variables are mainly discussed by many examples.
引入了多元函数项级数的概念,给出了其收敛域及和函数的定义;通过详实的例子讨论了多元幂级数的收敛域、和函数及多元函数展开为多元幂级数的计算方法。
-
Where ,is the coefficients of power series .The radius of convergence is given by
其中,是幂级数的相邻两项的系数,则这幂级数的收敛半径为
-
Power series, radius of convergence; function that can be expanded in a power series on an interval.
幂级数;收敛半径;可展开为幂级数的函数。
-
Property 2 (Term-by-Term Integration) Suppose that is the sum of a power series on interval ;that is,Then, if is interior to ,and the radius of convergence of the integrated series is the same as for the orginal series.
性质 2 幂级数的和函数在其收敛域上可积,并有逐项积分公式,,逐项积分后所得到的幂级数和原级数有相同的收敛半径。
-
The radius of convergence of a power series ''f'' centered on a point '' a '' is equal to the distance from ''a'' to the nearest point where '' f '' cannot be defined in a way that makes it holomorphic.
一个中心为'' a ''的幂级数''f''的收敛半径'' R ''等于''a''与离'' a ''最近的使得函数不能用幂级数方式定义的点的距离。
-
In this paper, find Euler's formula using double integral , power series convergence and uniform convergence in the convergence region.
本文利用二重积分公式,幂级数在收敛区间内的收敛性质、一致收敛性质及可逐项积分的性质来证明Euler公式
-
The positive number is called the convergent radius of power series, and is said to be the convergent interval of power series.
正数通常叫做幂级数的收敛半径,开区间叫做幂级数的收敛区间。
-
Theorem 1 If the power series is convergent at ,then for any that ,the power series absolutely converges at point ;if the power series is divergent at ,then for any that ,the power series diverges at point .
定理1 如果级数当时收敛,则适当不等式的一切使这幂级数绝对收敛;反之,如果级数当时发散,则适合不等式的一切使这幂级数发散。
-
According to the definition of matrix power series and the convergence property of the power series, using the type compare method, the thesis got and verified part convergence properties of the matrix power series.
摘要根据矩阵幂级数的定义和数学分析中幂级数的收敛性质,运用类比的推理法,得到并验证了矩阵幂级数的部分相应的收敛性质。
-
For example, geometric series can be used to evaluate the sum of power series and can be used to determine the convergence of other series.
例如可以用几何级数来解决幂级数的求和问题、以及用它作为优级数来判定其他级数的收敛性等等。
- 更多网络解释与收敛幂级数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
absolutely convergent power series:绝对收敛幂级数
armature relay 电枢继电器 | absolutely convergent power series 绝对收敛幂级数 | twelfth-cake 主显节的糕饼
-
associated prime ideal:相伴素理想
associated power series 相伴幂级数 | associated prime ideal 相伴素理想 | associated radius of convergence 相伴收敛半径
-
convergent integral:收敛积分
convergent infinite product 收敛无穷乘积 | convergent integral 收敛积分 | convergent power series 收敛幂级数
-
convergent power series:收敛幂级数
convergent integral 收敛积分 | convergent power series 收敛幂级数 | convergent sequence 收敛序列
-
convergent power series ring:收敛幂级数环
unnoted 不引人注意的, 无价值的 | convergent power series ring 收敛幂级数环 | collateral clause 附则
-
ring of convergent power series:收敛幂级数环
ring of compressed cardboard 纸板环 | ring of convergent power series 收敛幂级数环 | ring of differential polynomials 微分多项式环
-
ring of differential polynomials:微分多项式环
ring of convergent power series 收敛幂级数环 | ring of differential polynomials 微分多项式环 | ring of endomorphisms 自同态环
-
Euler:欧拉
例1; (1) 定理1(阿贝尔(Abel)定理) 如果级数当x = x0(x0 0)时收敛,则适合不等式 x x0 的一切x使这幂级数发散.(证明)欧拉(Euler)公式:(2) 欧拉(Euler)公式:eix =
-
unnoted:不引人注意的, 无价值的
mental set 心(理定)向 | unnoted 不引人注意的, 无价值的 | convergent power series ring 收敛幂级数环
-
twelfth-cake:主显节的糕饼
absolutely convergent power series 绝对收敛幂级数 | twelfth-cake 主显节的糕饼 | charity school 贫民学校, 慈善学校