- 更多网络例句与支撑函数相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Owing to the properties of wavelet packet functions such as compact support in time domain, localization in frequency domain and orthogonalities, the performance of the proposed system is enhanced greatly.
为了节约系统带宽,论文提出了小波包函数的"有效支撑长度"的概念,通过合理调节"有效支撑长度"上的小波包函数的长度达到节省系统带宽的目的。
-
As we known, the total curvature of a simple closed plane curve γ is ±2π, that is,∫γ kds =±2π, from Cauchy-Schwarz's inequality, one gets that We will use Minkowski's support function to study the stability of the above
我们将利用Minkowski支撑函数,在Hausdorff距离的意义下研究这一不等式的稳定性。
-
Secondly, in this part, we will introduce the notation of average geodesic curvature for curves in the hyperbolic plane, and investigate the relationship between the embeddedness of the curve and its average geodesic curvature. Finally, we will employ the Minkowskis support function to construct a new kind of non-circular smooth constant breadth curves in order to attack some open problems on the constant width curves for example, whether there is a non-circular polynomial curve of constant width, etc.
其次,对双曲平面上的曲线引入平均测地曲率的概念,并讨论双曲平面上凸曲线的嵌入性与它的平均测地曲率之间的关系,其目的是为了将双曲平面上曲线的性质与欧氏平面中曲线的性质作一些对比;最后,我们利用Minkowski支撑函数构造了一类新的非圆的光滑常宽曲线,其目的是想回答有关常宽曲线的一些未解决问题如是否存在非圆的多项式常宽曲线?
-
Here, we will give an independent proof of the existence for inequality (2.1.3), and by the way, give an estimate on the width of the bi-enclosing annulus of closed convex curves in the plane. Secondly, in this part, we will introduce the notation of average geodesic curvature for curves in the hyperbolic plane, and investigate the relationship between the embeddedness of the curve and its average geodesic curvature.
其次,对双曲平面上的曲线引入平均测地曲率的概念,并讨论双曲平面上凸曲线的嵌入性与它的平均测地曲率之间的关系,其目的是为了将双曲平(来源:ABC论84文网www.abclunwen.com)面上曲线的性质与欧氏平面中曲线的性质作一些对比;最后,我们利用Minkowski支撑函数构造了一类新的非圆的光滑常宽曲线,其目的是想回答有关常宽曲线的一些未解决问题如是否存在非圆的多项式常宽曲线?
-
By using them, we can discuss the theory of holomorphic functions on domains: the characterization of zeros sets of holomorphic functions on the boundary, the characterization of A infinity interpolation sets on the boundary, etc.
对于复椭球和广义复椭球,我们给出了其全纯支撑函数的估计,构造了边界上的拟距离,并用这些结果来研究域上的解析函数论:边界上解析函数零点集的刻划,A无穷插值集的刻划等。
-
We derived evolution equations of the corresponding Eu-clidean support functions.Finally we obtained that the solutions of the heat equation convergeto a point in infinite time,the solutions of the other equation converge to a point in a finite time
我们又得出相应的欧氏支撑函数的发展方程,最终得到热方程的解在无限时间时收敛于一点;另一发展方程的解在一个最大时间区间内存在,并且在有限时间内收敛于一点。
-
Here, we will try our best to use the unit-speed outward normal flow to prove this result, and therefore to strengthen Gage's inequality as a more "" isoperimetric-type"" inequality. It will be the main task of the first part of the present thesis.
这是本文第一部分的主要任务,在这里我们还利用Minkowski支撑函数将Gage不等式叙述成一个积分不等式,这可以视为Gage不等式的分析形式。
-
In order to get the convergence properties of the weak set-valued Amart , we firstly proved the theorem that the limit of support functions is a support function.
为了得到关于弱集值渐近鞅的收敛性质,首先证明了支撑函数列的极限亦为一支撑函数。
-
The multi-wavelets functions are supported on [-1, 1], and one wavelet function is symmetric, the other is anti-symmetric.
所以,可以由这两个尺度函数构造一类多小波函数,这类多小波函数不但在[-1,1]上具有紧支撑性,而且一个小波函数具有对称性,另一个小波函数具有反对称性,因此这种紧支撑多小波函数适用于区间[0,1]。
-
Making use of the relationship between the upper and lower level problem, we adopt the concept of the support functions in Generalized Benders Decomposition method to solve the model.
以广义Benders分解算法中的支撑函数的概念为基本思想,利用上下层目标函数之间的关系设计了求解此模型的新算法。
- 更多网络解释与支撑函数相关的网络解释 [注:此内容来源于网络,仅供参考]
-
supporting half space:支撑半空间
supporting function 支撑函数 | supporting half space 支撑半空间 | supporting hyperplane 支撑超平面
-
simply periodic function:简单周期函数
simplex interpolation 简单内插 | simply periodic function 简单周期函数 | simply supported beam 简单支撑梁
-
support function:支撑函数
support 台 | support function 支撑函数 | support of a function 函数的支集
-
support of a function:函数的支集
support function 支撑函数 | support of a function 函数的支集 | supporting function 支撑函数
-
Supporting function:支撑函数
support of a function 函数的支集 | supporting function 支撑函数 | supporting half space 支撑半空间
-
supporting line function:支撑线函数
支撑平面|supporting plane | 支撑线函数|supporting line function | 支付[矩]阵|payoff matrix