- 更多网络例句与插值公式相关的网络例句 [注:此内容来源于网络,仅供参考]
-
Lagrange interpolation focus on the application of the formula .The comparison between the method of Transform and that of Lagrange's interpolation formula in square matrix form is made. Also the form of Lagrange's interpolation formula is generalized to include the double root case.The application of the generalized lagrange's interpolation formula in square matrix to solving state equations is found to be effective.
重点介绍了Lagrange插值公式在状态方程求解中的应用,用对角矩阵及相似矩阵的性质证明了,当状态转移矩阵中方阵的特征根相异时,拉格朗日插值公式与Laplace变换法对表达具有一致性,并用极限方法对方阵含二重根时拉格朗日插值公式的应用进行了推导。
-
Starting from the Gauss forward interpolation formula, the EVERETT interpolation formula is led in the differential form.
本文从高斯向前插值公式出发,导出了等距节点插值的EVERETT差分公式。
-
It's the first time that from the angle of computational mathematics combined with the structure model of parallel machine, the parallel degree of the relevant algorithms in orthopaedics clinic engineering modeling system, such as piecewise cubic Lagrange interpolation formula, piecewise cubic Hermite's interpolation formula, cubic spline, Chebyshev multinomial fitting algorithms, least square method and contour curve multinomial algorithms, were discussed.
论文首次从计算数学的角度并结合并行机的结构模式出发,讨论了在骨科临床工程造型系统中可能涉及的如分段三次拉格郎日插值公式、分段三次埃尔米特插值公式、三次样条函数、切比雪夫多项式拟合算法,最小二乘法以及轮廓曲线多项式求值算法的并行度。
-
Osculatory Rational interpolation is similar to the polynomial Hermite interpolation, and for binary Osculatory rational interpolation, Similar to polynomial interpolation formulas haven't appeared from now on.
切触有理插值是类似于多项式插值中的Hermite插值的一种插值,而对于二元切触有理插值,目前还没有构造出类多项式的插值公式。
-
Lagrange interpolation formula, the right to use discrete n data interpolation.
用拉格朗日插值公式,对给定的n用离散数据进行插值计算。
-
The interpolation formula can be compiled into standard computer code.
在此,我们首先论述了保单调性的插值方法,根据分布函数的逆函数具有单调性的特点,用保单调的插值曲线去逼近分布函数的逆函数,进而用得到的插值公式进行随机变量的抽样,这样做可以节省抽样的时间,并且在分布函数具有一定的光滑性条件时,插值公式具有比较好的收敛阶。
-
through researching the formula on Newton interpolation of equally spaced nodes, especially through estimating and computing the remainder, we can draw a conclusion that the precision of the interpolation point selected in the middle is higher than near the end, the value of t also should be magnified to , and giving a new estimating formula on remainder which is easy to compute.
通过研究等距节点的Newton插值公式,尤其通过估计和计算其余项,得出了插值点选在中间时精度要优于选在端点附近的结论,t值也可放大为,并给出易于计算的新的余项估计式。
-
As an application of the interpolation criteria, the interpolation formula of bandlimited transmission signals which satisfied the condition of the Nyquist first criteria has been presented.
在信号插值问题上,首先利用基本的信号模型和Nyquist第一准则,导出了一个插值准则,作为插值准则的应用,对满足Nyquist第一准则的带限传输信号给出了一个通用的插值公式,以升余弦滚降函数为成形滤波函数的限带传输信号作为一个特例,通过计算机仿真验证了插值算法的可行性和有效性。
-
In this paper, the Lagrange interpolation formula asked a class function expression question, the determination function to the higher mathematics in the elementary mathematics in some value scope question, the equality proof question, the multinomial factorisation question, to ask to have the Finite series to pass the formula question, the certificate any n function at will n+1 different spots function value maximum value minimal problem and so on six aspects should serve as the simple introduction, and has separately made the comparison with these six aspects elementary mathematics method, thus solved some operation problems in elementary mathematics.
摘要本文对高等数学中Lagrange插值公式在初等数学中的求一类函数表达式问题、确定函数在某点的取值范围问题、恒等式的证明问题、多项式的因式分解问题、求有穷数列的通项公式问题、证明任一n次函数的随意的n+1个两两不同点的函数值的最大值的最小值问题等六个方面的应用作了简单介绍,并与这六个方面的初等数学方法分别作了比较,从而解决一些初等数学中的运算问题。
-
In this paper,a new algorithm is given by means of the complexification of the knots,i.e. the node in the plane is considered as a complex point,the vector as a complex vector,and then based on the construction of vector valued Thiele type rational interpolants and the backward three term recurrence relation for vector valued continued fractions,the recursive algorithm is obtained by appropriate transformation.
文章利用插值型值点复数化的方法讨论并给出了二元向量值有理插值的一种新算法,即把平面上的插值结点视为一个复数,所对应的向量视为一个复向量,使用一元Thiele型向量值有理插值公式的构造方法和向量连分式的向后三项递推关系式以及适当的变换,最后导出了这种递推算法。
- 更多网络解释与插值公式相关的网络解释 [注:此内容来源于网络,仅供参考]
-
aitken interpolation formula:艾特肯插值公式
aitken interpolation 艾特肯插值 | aitken interpolation formula 艾特肯插值公式 | albanese variety 阿尔巴内斯簇
-
Gauss interpolation formula:高斯插值公式
Gauss integral theorem | 高斯积分定理 | Gauss interpolation formula | 高斯插值公式 | Gauss law | 高斯定律
-
gaussian interpolation formula:高斯插值公式
gaussian integer 高斯整数 | gaussian interpolation formula 高斯插值公式 | gaussian number field 高斯数域
-
hermite interpolation formula:埃尔米特插值公式
hermite function 埃尔米特函数 | hermite interpolation formula 埃尔米特插值公式 | hermite interpolation polynomial 埃尔米特插值多项式
-
interpolation formula:插值公式
interpolation error 插值误仪 | interpolation formula 插值公式 | interpolation function 插值函数
-
lagrange interpolation formula:拉格朗日插值公式
Laerial L形天线 | Lagrange interpolation formula 拉格朗日插值公式 | Lamb dip frequency stabilization 兰姆凹陷稳频
-
newton interpolation formula:牛顿插值公式
Newton identities 牛顿恒等式 | Newton interpolation formula 牛顿插值公式 | Newton interpolation polynomial 牛顿插值多项式
-
Newton forward interpolation formula:牛顿向前插值公式
Newton formula 牛顿公式 | Newton forward interpolation formula 牛顿向前插值公式 | Newton identities 牛顿恒等式
-
Newton forward interpolation formula:牛顿前向插值公式
Newton backward interpolation formula 牛顿後向插值公式 | Newton forward interpolation formula 牛顿前向插值公式 | Newton method 牛顿法
-
Newton backward interpolation formula:牛顿後向插值公式
Neumann problem 纽曼问题 | Newton backward interpolation formula 牛顿後向插值公式 | Newton forward interpolation formula 牛顿前向插值公式