- 更多网络例句与拟群相关的网络例句 [注:此内容来源于网络,仅供参考]
-
For example, the quasigroup on ''' R ''' with multiplication given by ('' x ''+''y'')/2 is isotopic to the additive group '''R''', but is not itself a group.
比如说,实数集合'''R'''与其上的运算(''x''+''y'')/2 构成的拟群同痕于'''R'''上的加法群,但它本身不是群。
-
Two quasigroups are ''' isotopic ''' if there is an isotopy between them.
两个拟群是'''合伦'''的当且仅当它们之间存在合伦映射。
-
Keywords: Large sets of Kirkman triple system; transitive resolvable idempotent symmetric quasigroup; almost difference set; defference sets pair
中文关键词: Kirkman三元系大集,可迁可分解幂等对称拟群,几乎差集,差集偶
-
A loop has the inverse property if it has both the left and right inverse properties.
一个合伦是使得中所有的三个映射都是双射的拟群同伦。
-
However, a quasigroup which is isotopic to a group need not be a group.
但是,如果一个拟群与某个群同痕,由于缺乏单位元,拟群本身不一定是群。
-
Each quasigroup is isotopic to a loop.
每个拟群都与某个圈同痕。
-
A magma ''Q'' is a quasigroup precisely when these operators are bijective. The inverse maps are given in terms of left and right division by
原群 ''Q''是拟群当且仅当这两个变换是双射变换,而且它们的逆变换给出了右除和左除变换
-
A quasigroup homomorphism is just a homotopy for which the three maps are equal.
三个映射都相同时,就是一个拟群同态。
-
We first introduced a new concept called transitive resolvable idempotent symmetric quasigroup, proved that the necessary condition for the existence of TRISQ is also sufficient, then presented a tripling construction for LKTS by using TRISQ instead of TKTS, thus removed the condition "there exists a TKTS" in Denniston''s tripling construction for LKTS; We also improved J. Lei''s product construction for LKTS by removing the condition "there exists a TKTS".
我们首先引入了可迁可分解幂等对称拟群的新概念,证明了TRISQ存在的必要条件也是充分的,然后给出了用TRISQ取代可迁Kirkamns三元系的LKTS的三倍构造法,这样就去掉了在Denniston的关于LKTS的3倍构造中的条件"存在一个TKTS";我们用TRISQ取代TKTS改进了雷建国的关于LKTS的一个积构造方法,从而去掉了该构造方法中的条件"存在一个TKTS"。
-
By using properties of quasi-regular semigroups and left central idempotents, some statements are proved. Let S be a quasi-right semigroup, then (1) S is a quasi-completely regular semigroup;(2) RegS is a completely regular semigroup;(3) R(superscript *) is the smallest semilattice congruence on S;(4) Each R-class T(subscript α) on RegS is a right group;(5) T(subscript α)G(subscript α)×E(subscript α), where G(subscript α) is a group, E(subscript α) is a right zero semigroup.
利用拟正则半群和左中心幂等元的性质,证明了S为拟右半群时,(1) S为拟完全正则半群;(2) RegS为完全正则半群;(3) R为S上的最小半格同余;(4) RegS上的每个R-类T为右群;(5) TG×E,其中G为群,E为右零半群。
- 更多网络解释与拟群相关的网络解释 [注:此内容来源于网络,仅供参考]
-
right quasi invertible element:右拟可逆元
right quasi inverse 右拟逆元 | right quasi invertible element 右拟可逆元 | right quasigroup 右拟群
-
left quasi simple ring:左拟单环
left quasi regularity 左拟正则性 | left quasi simple ring 左拟单环 | left quasigroup 左拟群
-
left quasigroup:左拟群
left quasi simple ring 左拟单环 | left quasigroup 左拟群 | left quotient 左商
-
quasiconformal mapping:拟保角映射
拟紧空间 quasicompact space | 拟保角映射 quasiconformal mapping | 拟群 quasigroup
-
quasigroup:拟群
拟保角映射 quasiconformal mapping | 拟群 quasigroup | 拟长度 quasilength
-
right quasigroup:右拟群
right quasi invertible element 右拟可逆元 | right quasigroup 右拟群 | right quotient 右商
-
medial quasigroup:中间拟群
medial process of tuberosity of calcaneus 跟骨结节内侧突 | medial quasigroup 中间拟群 | medial root 内侧根
-
totally symmetric quasigroup:完全对称拟群
totally symmetric loop 完全对称圈 | totally symmetric quasigroup 完全对称拟群 | touch 相切
-
quasilength:拟长度
拟群 quasigroup | 拟长度 quasilength | 拟线性自控系统 quasilinear autonomous system
-
subquasigroup:子拟群
subprojective manifold 次射影廖 | subquasigroup 子拟群 | subquotient of a module 模的子商